Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics Winter 2013 / Vuorinen

Exercise 5, 2015 File: icg1305.tex, 2013-1-28,22.15

1. Let $G = \mathbb{R}^n \setminus \{0\}, x, y \in G$, and let $\varphi \in [0, \pi]$ be the angle between the segments [0, x] and [0, y].

(a) Show that $\sin \frac{1}{2}\varphi \leq \frac{|x-y|}{|x|+|y|}$. (b) Show that $|x-y| \leq ||x| - |y|| + 2\min\{|x|, |y|\}\sin(\varphi/2)$. (c) It is known (by [MOS]) that $k_G(x, y) = \sqrt{\varphi^2 + \log^2 \frac{|x|}{|y|}}$. Using this result show that there is constant A such that that $k_G(x,y) \leq A j_G(x,y)$ for all $x, y \in G$ i.e. that G is a uniform domain.

2. Let $x, y \in \mathbb{R}^n \setminus \{0\}$ and $|y| \ge |x|$. Show that $d(y, [0, x]) \ge \frac{|x-y|}{2}$.

3. Let $f \in \mathcal{GM}(\mathbf{B}^n)$ and $r \in (0,1)$. Show that

$$|f(x) - f(y)| \le \frac{1}{1 - r^2} |x - y|,$$

for $|x|, |y| \leq r$. [Hint: $\operatorname{sh}^2 \frac{\rho(x,y)}{2} = \ldots$]

4. For an open set D in \mathbb{R}^n , $D \neq \mathbb{R}^n$, let

$$\varphi_D(x,y) = \log\left(1 + \max\left\{\frac{|x-y|}{\sqrt{d(x)d(y)}}, \frac{|x-y|^2}{d(x)d(y)}\right\}\right); x, y \in D.$$

Show that $j_D(x,y)/2 \le \varphi_D(x,y) \le 2 j_D(x,y)$.

5. Let $G = \mathbb{R}^n \setminus \{0\}$ and $f(x) = a^2 x/|x|^2$ for $x \in G$, where a > 0. Show that $k_G(f(x), f(y)) = k_G(x, y)$ and $j_G(f(x), f(y)) = j_G(x, y)$ for $x, y \in G$.

6. Let $f: G \to G' = f(G), G, G' \subset \mathbb{R}^n$, be a homeomorphism such that for some C > 0 and all $x, y \in G$, $k_{G'}(f(x), f(y)) \leq Ck_G(x, y)$. Suppose that $b \in \partial G$ and that $b_k \in G$ with $b_k \to b, f(b_k) \to \beta, k \to \infty$, and let $E = \bigcup D(b_k, 1)$. Here D(x, M) stands for the quasihyperbolic ball. Prove that $f(x) \to \beta$ when $x \to b, x \in E$. Note: By topology, for each sequence (b_k) tending to a boundary point b of G such that the image sequence also has a limit γ , it follows that $\gamma \in \partial G'$.