Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics
 Winter 2013 / Vuorinen

Exercise 5, 2015 File: icg1305.tex, 2013-1-28,22.15

1. Let $G=\mathbb{R}^{n} \backslash\{0\}, x, y \in G$, and let $\varphi \in[0, \pi]$ be the angle between the segments $[0, x]$ and $[0, y]$.
(a) Show that $\sin \frac{1}{2} \varphi \leq \frac{|x-y|}{|x|+|y|}$.
(b) Show that $|x-y| \leq||x|-|y||+2 \min \{|x|,|y|\} \sin (\varphi / 2)$.
(c) It is known (by [MOS]) that $k_{G}(x, y)=\sqrt{\varphi^{2}+\log ^{2} \frac{|x|}{|y|}}$. Using this result show that there is constant A such that that $k_{G}(x, y) \leq A j_{G}(x, y)$ for all $x, y \in G$ i.e. that G is a uniform domain.
2. Let $x, y \in \mathbb{R}^{n} \backslash\{0\}$ and $|y| \geq|x|$. Show that $d(y,[0, x]) \geq \frac{|x-y|}{2}$.
3. Let $f \in \mathcal{G M}\left(\mathbf{B}^{n}\right)$ and $r \in(0,1)$. Show that

$$
|f(x)-f(y)| \leq \frac{1}{1-r^{2}}|x-y|,
$$

for $|x|,|y| \leq r$. [Hint: $\operatorname{sh}^{2} \frac{\rho(x, y)}{2}=\ldots$]
4. For an open set D in $\mathbb{R}^{n}, D \neq \mathbb{R}^{n}$, let

$$
\varphi_{D}(x, y)=\log \left(1+\max \left\{\frac{|x-y|}{\sqrt{d(x) d(y)}}, \frac{|x-y|^{2}}{d(x) d(y)}\right\}\right) ; x, y \in D
$$

Show that $j_{D}(x, y) / 2 \leq \varphi_{D}(x, y) \leq 2 j_{D}(x, y)$.
5. Let $G=\mathbb{R}^{n} \backslash\{0\}$ and $f(x)=a^{2} x /|x|^{2}$ for $x \in G$, where $a>0$. Show that $k_{G}(f(x), f(y))=k_{G}(x, y)$ and $j_{G}(f(x), f(y))=j_{G}(x, y)$ for $x, y \in G$.
6. Let $f: G \rightarrow G^{\prime}=f(G), G, G^{\prime} \subset \mathbb{R}^{n}$, be a homeomorphism such that for some $C>0$ and all $x, y \in G, k_{G^{\prime}}(f(x), f(y)) \leq C k_{G}(x, y)$. Suppose that $b \in \partial G$ and that $b_{k} \in G$ with $b_{k} \rightarrow b, f\left(b_{k}\right) \rightarrow \beta, k \rightarrow \infty$, and let $E=\cup D\left(b_{k}, 1\right)$. Here $D(x, M)$ stands for the quasihyperbolic ball. Prove that $f(x) \rightarrow \beta$ when $x \rightarrow b, x \in E$. Note: By topology, for each sequence $\left(b_{k}\right)$ tending to a boundary point b of G such that the image sequence also has a limit γ, it follows that $\gamma \in \partial G^{\prime}$.

