Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics
 Winter 2013 / Vuorinen

Exercise 4, 2013 File: icg1304.tex, 2013-2-11,14.01

1. (a) Show that an inversion f in $S^{n-1}(a, r)$, when $a_{n}=0$, preserves the upper half-space

$$
f\left(\mathbb{H}^{n}\right)=\mathbb{H}^{n}
$$

(b) Show that the expression

$$
\frac{|x-y|^{2}}{2 x_{n} y_{n}}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, is invariant under an inversion in $S^{n-1}(a, r)$ when $a_{n}=0$.

Notation for problems 2-4.

Let $L(x, y)$ be the line through the points x and y. Let $\partial \mathbb{H}$ be the real axis. The complex number x is denoted by $x=x_{1}+i x_{2}$ or $x=|x| e^{i \alpha}$.

Let $x=x_{1}+i x_{2}, y=y_{1}+i y_{2} \in \mathbb{C} \backslash\{0\}$ such that $0, x, y$ are noncollinear, and $x^{*}=x /|x|^{2}, y^{*}=y /|y|^{2}$. Let

$$
\begin{equation*}
a=i \frac{y\left(1+|x|^{2}\right)-x\left(1+|y|^{2}\right)}{2\left(x_{2} y_{1}-x_{1} y_{2}\right)} \quad \text { and } \quad r_{a}=\frac{\left.|x-y||x| y\right|^{2}-y \mid}{2|y|\left|x_{1} y_{2}-x_{2} y_{1}\right|} \tag{1}
\end{equation*}
$$

Then the four points x, y, x^{*}, y^{*} are in $S^{1}\left(a, r_{a}\right)$. Moreover, the circle $S^{1}\left(a, r_{a}\right)$ is orthogonal to S^{1}. These facts are assumed to be well-known.

Let $x=e^{i \alpha}, y=e^{i \beta}$ with $\alpha, \beta \in(0, \pi)$ and $\alpha \neq \beta$. The midpoint z of the hyperbolic segment $J[x, y]$ in \mathbb{H} is obtained from (2.7)/CGQM

$$
\begin{equation*}
z=e^{i \delta}, \quad \delta=\arccos \left(\frac{\cos \frac{\beta+\alpha}{2}}{\cos \frac{\beta-\alpha}{2}}\right) \tag{2}
\end{equation*}
$$

2. Let $x, y \in S^{1} \cap \mathbb{H},\left\{x_{*}, y_{*}\right\}=S^{1} \cap \partial \mathbb{H}$, let x_{*}, x, y, y_{*} occur in this order on S^{1}. Let a, r_{a} be as in (1) and z be as in (2). Furthermore, let $w=L(x, y) \cap \partial \mathbb{H}, v=L\left(x, x_{*}\right) \cap L\left(y, y_{*}\right), n=L(x, y) \cap S^{1}\left(\frac{w}{2}, \frac{|w|}{2}\right) \cap \mathbb{H}$. Then
(1) the line $L(a, z)$ is orthogonal to $\partial \mathbb{H}$.
(2) the line $L(w, z)$ is tangent to the circle S^{1}.
(3) the circle $S^{1}\left(a, r_{a}\right)$ is orthogonal to the circle $S^{1}\left(\frac{w}{2}, \frac{|w|}{2}\right)$.
(4) the line $L(v, z)$ is orthogonal to $\partial \mathbb{H}$.
(5) the point v is on the circle $S^{1}\left(a, r_{a}\right)$.
(6) the point n is the midpoint of the Euclidean segment $[x, y]$.

Figure 1: Problem 2

Figure 2: Problem 3
(7) $\angle y_{1} z_{1} y=\angle x_{1} z_{1} x$.
3. Let $x, y \in \mathbb{B} \backslash\{0\}$ such that $0, x, y$ are noncollinear and $|x| \neq|y|$. Let $x^{*}=x /|x|^{2}, y^{*}=y /|y|^{2}$ and $w=L(x, y) \cap L\left(x^{*}, y^{*}\right)$. Construct the circle $S^{1}\left(w, r_{w}\right)$, which is orthogonal to the circle $S^{1}\left(a, r_{a}\right)$, where a, r_{a} are as in (1). Show that the circle $S^{1}\left(w, r_{w}\right)$ is orthogonal to the circle S^{1} and

$$
w=\frac{y\left(1-|x|^{2}\right)-x\left(1-|y|^{2}\right)}{|y|^{2}-|x|^{2}} \text { and } r_{w}=\frac{|x-y| \sqrt{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}}{\left||y|^{2}-|x|^{2}\right|} .
$$

4. Fix $0<t<1$, let $x_{*}=t+i \sqrt{1-t^{2}}$ and $y_{*}=t-i \sqrt{1-t^{2}}$. Construct the orthogonal circle $S^{1}\left(a, r_{a}\right)$ intersecting the unit circle at the points x_{*}, y_{*}. Let $\{x, y\}=S^{1}\left(a, r_{a}\right) \cap \mathbb{B}, x^{*}=x /|x|^{2}, y^{*}=y /|y|^{2}$, and $u=$ $L\left(x, y^{*}\right) \cap L\left(y, x^{*}\right)$. Then
(1) the point

$$
u=\frac{y\left(1-|x|^{2}\right)+x\left(1-|y|^{2}\right)}{1-|x|^{2}|y|^{2}}
$$

and $\operatorname{Re} u=\operatorname{Re} w$, where $w=L(x, y) \cap L\left(x^{*}, y^{*}\right)$.
(2) the three points w, x_{*}, y_{*} are collinear and hence $\operatorname{Re} u=t$.

Figure 3: Problem 4

