Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics Winter 2013 / Vuorinen

Exercise 4, 2013 File: icg1304.tex, 2013-2-11,14.01

1. (a) Show that an inversion f in $S^{n-1}(a, r)$, when $a_n = 0$, preserves the upper half-space

$$f(\mathbb{H}^n) = \mathbb{H}^n.$$

(b) Show that the expression

$$\frac{|x-y|^2}{2x_n y_n}$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$, is invariant under an inversion in $S^{n-1}(a, r)$ when $a_n = 0$.

Notation for problems 2-4.

Let L(x, y) be the line through the points x and y. Let $\partial \mathbb{H}$ be the real axis. The complex number x is denoted by $x = x_1 + ix_2$ or $x = |x|e^{i\alpha}$.

Let $x = x_1 + ix_2$, $y = y_1 + iy_2 \in \mathbb{C} \setminus \{0\}$ such that 0, x, y are noncollinear, and $x^* = x/|x|^2$, $y^* = y/|y|^2$. Let

$$a = i \frac{y(1+|x|^2) - x(1+|y|^2)}{2(x_2y_1 - x_1y_2)} \quad \text{and} \quad r_a = \frac{|x-y| |x|y|^2 - y|}{2|y| |x_1y_2 - x_2y_1|}.$$
 (1)

Then the four points x, y, x^*, y^* are in $S^1(a, r_a)$. Moreover, the circle $S^1(a, r_a)$ is orthogonal to S^1 . These facts are assumed to be well-known.

Let $x = e^{i\alpha}$, $y = e^{i\beta}$ with $\alpha, \beta \in (0, \pi)$ and $\alpha \neq \beta$. The midpoint z of the hyperbolic segment J[x, y] in \mathbb{H} is obtained from (2.7)/CGQM

$$z = e^{i\delta}, \quad \delta = \arccos\left(\frac{\cos\frac{\beta+\alpha}{2}}{\cos\frac{\beta-\alpha}{2}}\right).$$
 (2)

2. Let $x, y \in S^1 \cap \mathbb{H}$, $\{x_*, y_*\} = S^1 \cap \partial \mathbb{H}$, let x_*, x, y, y_* occur in this order on S^1 . Let a, r_a be as in (1) and z be as in (2). Furthermore, let $w = L(x, y) \cap \partial \mathbb{H}$, $v = L(x, x_*) \cap L(y, y_*)$, $n = L(x, y) \cap S^1(\frac{w}{2}, \frac{|w|}{2}) \cap \mathbb{H}$. Then

- (1) the line L(a, z) is orthogonal to $\partial \mathbb{H}$.
- (2) the line L(w, z) is tangent to the circle S^1 .
- (3) the circle $S^1(a, r_a)$ is orthogonal to the circle $S^1(\frac{w}{2}, \frac{|w|}{2})$.
- (4) the line L(v, z) is orthogonal to $\partial \mathbb{H}$.
- (5) the point v is on the circle $S^1(a, r_a)$.
- (6) the point n is the midpoint of the Euclidean segment [x, y].

Figure 1: Problem 2

Figure 2: Problem 3

(7) $\angle y_1 z_1 y = \angle x_1 z_1 x$.

3. Let $x, y \in \mathbb{B} \setminus \{0\}$ such that 0, x, y are noncollinear and $|x| \neq |y|$. Let $x^* = x/|x|^2$, $y^* = y/|y|^2$ and $w = L(x, y) \cap L(x^*, y^*)$. Construct the circle $S^{1}(w, r_{w})$, which is orthogonal to the circle $S^{1}(a, r_{a})$, where a, r_{a} are as in (1). Show that the circle $S^1(w, r_w)$ is orthogonal to the circle S^1 and

$$w = \frac{y(1 - |x|^2) - x(1 - |y|^2)}{|y|^2 - |x|^2} \text{ and } r_w = \frac{|x - y|\sqrt{(1 - |x|^2)(1 - |y|^2)}}{||y|^2 - |x|^2|}.$$

4. Fix 0 < t < 1, let $x_* = t + i\sqrt{1-t^2}$ and $y_* = t - i\sqrt{1-t^2}$. Construct the orthogonal circle $S^1(a, r_a)$ intersecting the unit circle at the points x_*, y_* . Let $\{x, y\} = S^1(a, r_a) \cap \mathbb{B}, x^* = x/|x|^2, y^* = y/|y|^2$, and $u = x^2/|x|^2$ $L(x, y^*) \cap L(y, x^*)$. Then (1) the point

$$u = \frac{y(1 - |x|^2) + x(1 - |y|^2)}{1 - |x|^2|y|^2},$$

and $\operatorname{Re} u = \operatorname{Re} w$, where $w = L(x, y) \cap L(x^*, y^*)$. (2) the three points w, x_*, y_* are collinear and hence $\operatorname{Re} u = t$.

Figure 3: Problem 4