Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics Winter 2013 / Vuorinen

Exercise 3, 2013 File: icg1303.tex, 2013-1-6,17.25 N.B. Numbered results/ formulas refer to CGQM.

1. Show that for all $a, x, y \in B^n$

$$\frac{|T_a x - T_a y|^2}{(1 - |T_a x|^2)(1 - |T_a y|^2)} = \frac{|x - y|^2}{(1 - |x|^2)(1 - |y|^2)}$$

Hint. Lectures, Ahlfors bracket.

2. For this exercise, recall first the picture of Problem 1, Exercise 1.

Figure 1: The unit circle and orthogonal circles Y_a, Y_b .

(a) Let $r \in (0, 1)$. Find a point $a \in (0, re_1)$ such that $T_a(0) = -T_a(re_1)$. (b) For $\varphi \in (0, \frac{1}{2}\pi)$, let $x_{\varphi} = (\cos \varphi, \sin \varphi)$ and $y_{\varphi} = (\cos \varphi, -\sin \varphi)$. Then there exists a Möbius transformation $T_a \colon \mathbb{B}^2 \to \mathbb{B}^2$ with $T_a e_1 = e_1$, $T_a(-e_1) = -e_1$, $T_a(x_{\varphi}) = e_2 = -T_a(y_{\varphi})$. Find |a|.

3. (a) Let $0 < a \le 1 \le b$ and $\varphi(t) = \max\{t^a, t^b\}$. Then, with $u = \log^{1-a} 2$, $v = \log^{1-b} 2$,

(1) the function

$$f_1(t) = \frac{\log(1+t)}{\log(1+t^a)}$$

is increasing on $(0, \infty)$ with range (0, 1/a).

(2) for $t \in (0, 1)$

$$u \le f_2(t) < 1,$$

where

$$f_2(t) = \frac{\log(1+t^a)}{\log^a(1+t)}.$$

The function $f_2(t)$ is decreasing on (0, 1) and increasing on (1, unfty) with $f_2(1) = u$.

(3) the function

$$f_4(t) = \frac{\log(1+t^b)}{\log(1+t)}$$

is increasing on $(0, \infty)$ with range (0, b).

4. Let $x, y \in \mathbb{R}^n$ and let t_x be a spherical isometry with $t_x(x) = 0$. Show that

$$|t_x y| = \frac{|x - y|}{\sqrt{(1 + |x|^2)(1 + |y|^2) - |x - y|^2}}$$

Let $\alpha \in [0, \frac{1}{2}\pi]$ be such that $\sin \alpha = q(x, y)$. Then α is the angle between the segments $[e_{n+1}, t_x x] = [e_{n+1}, 0]$ and $[e_{n+1}, t_x y]$ at e_{n+1} . Show that the above formula can be rewritten as $|t_x y| = \tan \alpha$.

5. For $x, y \in \mathbb{B}^n$ and $T_x \in \mathcal{M}(\mathbb{B}^n)$ show that

$$|T_xy| = \frac{|x-y|}{\sqrt{|x-y|^2 + (1-|x|^2)(1-|y|^2)}} = \frac{s}{\sqrt{1+s^2}}$$

,

where $s^2 = |x - y|^2 / ((1 - |x|^2)(1 - |y|^2)).$

6. Let $h: [0, \infty) \to [0, \infty)$ be strictly increasing with h(0) = 0 such that h(t)/t is decreasing. Show that $h(x + y) \leq h(x) + h(y)$ for all x > 0. With $h(t) = t^{\alpha}$, $\alpha \in (0, 1)$, apply this result to show that if d(x, y) is a metric then $d^{\alpha}(x, y) = d(x, y)^{\alpha}$ also is a metric.