Introduction to Conformal Geometry and Quasiconformal Maps
Department of Mathematics and Statistics
Winter 2013 / Vuorinen
Exercise 3, 2013 File: icg1303.tex, 2013-1-6,17.25
N.B. Numbered results/ formulas refer to CGQM.

1. Show that for all $a, x, y \in B^{n}$

$$
\frac{\left|T_{a} x-T_{a} y\right|^{2}}{\left(1-\left|T_{a} x\right|^{2}\right)\left(1-\left|T_{a} y\right|^{2}\right)}=\frac{|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)} .
$$

Hint. Lectures, Ahlfors bracket.
2. For this exercise, recall first the picture of Problem 1, Exercise 1.

Figure 1: The unit circle and orthogonal circles Y_{a}, Y_{b}.
(a) Let $r \in(0,1)$. Find a point $a \in\left(0, r e_{1}\right)$ such that $T_{a}(0)=-T_{a}\left(r e_{1}\right)$.
(b) For $\varphi \in\left(0, \frac{1}{2} \pi\right)$, let $x_{\varphi}=(\cos \varphi, \sin \varphi)$ and $y_{\varphi}=(\cos \varphi,-\sin \varphi)$.

Then there exists a Möbius transformation $T_{a}: \mathbb{B}^{2} \rightarrow \mathbb{B}^{2}$ with $T_{a} e_{1}=e_{1}$, $T_{a}\left(-e_{1}\right)=-e_{1}, T_{a}\left(x_{\varphi}\right)=e_{2}=-T_{a}\left(y_{\varphi}\right)$. Find $|a|$.
3. (a) Let $0<a \leq 1 \leq b$ and $\varphi(t)=\max \left\{t^{a}, t^{b}\right\}$. Then, with $u=$ $\log ^{1-a} 2, v=\log ^{1-b} 2$,
(1) the function

$$
f_{1}(t)=\frac{\log (1+t)}{\log \left(1+t^{a}\right)}
$$

is increasing on $(0, \infty)$ with range $(0,1 / a)$.
(2) for $t \in(0,1)$

$$
u \leq f_{2}(t)<1
$$

where

$$
f_{2}(t)=\frac{\log \left(1+t^{a}\right)}{\log ^{a}(1+t)}
$$

The function $f_{2}(t)$ is decreasing on $(0,1)$ and increasing on (1, infty) with $f_{2}(1)=u$.
(3) the function

$$
f_{4}(t)=\frac{\log \left(1+t^{b}\right)}{\log (1+t)}
$$

is increasing on $(0, \infty)$ with range $(0, b)$.
4. Let $x, y \in \mathbb{R}^{n}$ and let t_{x} be a spherical isometry with $t_{x}(x)=0$. Show that

$$
\left|t_{x} y\right|=\frac{|x-y|}{\sqrt{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)-|x-y|^{2}}} .
$$

Let $\alpha \in\left[0, \frac{1}{2} \pi\right]$ be such that $\sin \alpha=q(x, y)$. Then α is the angle between the segments $\left[e_{n+1}, t_{x} x\right]=\left[e_{n+1}, 0\right]$ and $\left[e_{n+1}, t_{x} y\right]$ at e_{n+1}. Show that the above formula can be rewritten as $\left|t_{x} y\right|=\tan \alpha$.
5. For $x, y \in \mathbb{B}^{n}$ and $T_{x} \in \mathcal{M}\left(\mathbb{B}^{n}\right)$ show that

$$
\left|T_{x} y\right|=\frac{|x-y|}{\sqrt{|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}}=\frac{s}{\sqrt{1+s^{2}}}
$$

where $s^{2}=|x-y|^{2} /\left(\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)\right)$.
6. Let $h:[0, \infty) \rightarrow[0, \infty)$ be strictly increasing with $h(0)=0$ such that $h(t) / t$ is decreasing. Show that $h(x+y) \leq h(x)+h(y)$ for all $x>0$. With $h(t)=t^{\alpha}, \alpha \in(0,1)$, apply this result to show that if $d(x, y)$ is a metric then $d^{\alpha}(x, y)=d(x, y)^{\alpha}$ also is a metric.

