Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics Winter 2013 / Vuorinen

Exercise 2, 2013 File: icg1302.tex, 2012-12-31,16.44
N.B. Numbered results/ formulas refer to CGQM.

1. Let f be an inversion in $S^{n-1}(a, r)$ as defined in $1.2(2)[C G Q M]$. Show that $f^{-1}=f$ and that $|x-a||f(x)-a|=r^{2}$ for all $x \in \mathbb{R}^{n} \backslash\{a\}$. By considering similar triangles show that the following identity holds for $x, y \in \mathbb{R}^{n} \backslash\{a\}:$

$$
|f(x)-f(y)|=\frac{r^{2}|x-y|}{|x-a||y-a|}
$$

2. (a) For $0<t<1$ let $w(t)=t / \sqrt{1-t^{2}}$. Show that $q\left(0, w(t) e_{1}\right)=t$ and that

$$
\frac{t}{s}<\frac{w(t)}{w(s)}<\frac{2 t}{s}
$$

for $0<s<t<\frac{1}{2} \sqrt{3}$.
(b) Let $q(A)=\sup \{q(x, y): x, y \in A\}$ for $A \subset \overline{\mathbb{R}^{n}}$. Show that

$$
q(Q(z, r))=q(\partial Q(z, r))=2 r \sqrt{1-r^{2}}
$$

for $0<r \leq 1 / \sqrt{2}$.
3. (a) Show that if $a, x \in \mathbb{B}^{n}$, then $\sigma_{a}(x) \in \mathbb{B}^{n}$ [CGQM, (1.36)].
(b) Let $h(w)=r^{2} w /|w|^{2}, r>0, w \in \mathbb{R}^{n} \backslash\{0\}$. Show that if $x, y \in$ $\mathbb{R}^{n} \backslash\{0\},|x| \leq|y|, \lambda=(|x|+|x-y|) /|x|, z=\lambda x$, then

$$
|h(x)-h(z)| \leq|h(x)-h(y)| \leq 3|h(x)-h(z)| .
$$

4. Show that the inversion in $S^{n-1}\left(-e_{n}, \sqrt{2}\right)$ maps $W=\left\{z \in \mathbb{R}^{n}:|z|<\right.$ $\left.1 \& z_{n}=0\right\}$ onto $S^{n-1} \cap \mathbb{H}^{n}$, where $\mathbb{H}^{n}=\left\{z \in \mathbb{R}^{n}: z_{n}>0\right\}$. For $B, C \in W \backslash\{0\}$ consider the circular arc $U \subset W$ with $B, C \in U$ and perpendicular to ∂B^{n} at the points A and $D(A, B, C, D$ are on U in this order). Let $B_{1}, C_{1} \in S^{n-1}$ be the image points of B, C under the inversion. Let B_{2} be the projection of B_{1} onto the segment $[A, D]$. By looking at the picture, show that

- $0, B_{1}, B_{2}$ are collinear.
- $|A, B, C, D|=\left|A, B_{1}, C_{1}, D\right|$.

5. Let $h(x)=x /|x|^{2}$. Show that h maps the sphere $S^{n-1}\left(b e_{1}, s\right)$ (assume that $b>1+s)$ onto a sphere. Hint. Write $u=(b-s) e_{1}, v=(b+s) e_{1}$. If the image is a sphere $S^{n-1}(c, t)$, then clearly $c=(h(u)+h(v)) / 2$ and $t=|h(u)-h(v)| / 2$. Hence it remains to show that $\left|z-b e_{1}\right|=s$ implies $|h(z)-c|=t$.
6. The lines $\left[-e_{1}, 0\right]$ and $\left[a e_{1}, \infty\right], a>0$, can be mapped onto $\left[-e_{1}, e_{1}\right]$ and $\left[b e_{1}, \infty\right] \cup\left[-b e_{1}, \infty\right]$ by a Möbius transformation. Give a definition for b in terms of a. Notice that $[x, \infty]=\{x t: t \geq 1\}$, if $x \in \mathbb{R}^{n} \backslash\{0\}$.
