Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics Winter 2013 / Vuorinen

Exercise 2, 2013 File: icg1302.tex, 2012-12-31,16.44 **N.B.** Numbered results/ formulas refer to CGQM.

1. Let f be an inversion in $S^{n-1}(a, r)$ as defined in 1.2(2)[CGQM]. Show that $f^{-1} = f$ and that $|x - a||f(x) - a| = r^2$ for all $x \in \mathbb{R}^n \setminus \{a\}$. By considering similar triangles show that the following identity holds for $x, y \in \mathbb{R}^n \setminus \{a\}$:

$$|f(x) - f(y)| = \frac{r^2 |x - y|}{|x - a||y - a|}.$$

2. (a) For 0 < t < 1 let $w(t) = t/\sqrt{1-t^2}$. Show that $q(0, w(t)e_1) = t$ and that

$$\frac{t}{s} < \frac{w(t)}{w(s)} < \frac{2t}{s}$$

for $0 < s < t < \frac{1}{2}\sqrt{3}$. (b) Let $q(A) = \sup\{q(x, y) \colon x, y \in A\}$ for $A \subset \overline{\mathbb{R}^n}$. Show that

$$q(Q(z,r)) = q(\partial Q(z,r)) = 2r\sqrt{1-r^2}$$

for $0 < r \le 1/\sqrt{2}$.

3. (a) Show that if $a, x \in \mathbb{B}^n$, then $\sigma_a(x) \in \mathbb{B}^n$ [CGQM, (1.36)]. (b) Let $h(w) = r^2 w/|w|^2, r > 0, w \in \mathbb{R}^n \setminus \{0\}$. Show that if $x, y \in \mathbb{R}^n \setminus \{0\}, |x| \leq |y|, \lambda = (|x| + |x - y|)/|x|, z = \lambda x$, then

$$|h(x) - h(z)| \le |h(x) - h(y)| \le 3|h(x) - h(z)|.$$

4. Show that the inversion in $S^{n-1}(-e_n, \sqrt{2})$ maps $W = \{z \in \mathbb{R}^n : |z| < 1 \& z_n = 0\}$ onto $S^{n-1} \cap \mathbb{H}^n$, where $\mathbb{H}^n = \{z \in \mathbb{R}^n : z_n > 0\}$. For $B, C \in W \setminus \{0\}$ consider the circular arc $U \subset W$ with $B, C \in U$ and perpendicular to ∂B^n at the points A and D (A, B, C, D are on U in this order). Let $B_1, C_1 \in S^{n-1}$ be the image points of B, C under the inversion. Let B_2 be the projection of B_1 onto the segment [A, D]. By looking at the picture, show that

- $0, B_1, B_2$ are collinear.
- $|A, B, C, D| = |A, B_1, C_1, D|$.

5. Let $h(x) = x/|x|^2$. Show that h maps the sphere $S^{n-1}(be_1, s)$ (assume that b > 1 + s) onto a sphere. Hint. Write $u = (b - s)e_1, v = (b + s)e_1$. If the image is a sphere $S^{n-1}(c, t)$, then clearly c = (h(u) + h(v))/2 and t = |h(u) - h(v)|/2. Hence it remains to show that $|z - be_1| = s$ implies |h(z) - c| = t.

6. The lines $[-e_1, 0]$ and $[ae_1, \infty]$, a > 0, can be mapped onto $[-e_1, e_1]$ and $[be_1, \infty] \cup [-be_1, \infty]$ by a Möbius transformation. Give a definition for b in terms of a. Notice that $[x, \infty] = \{xt : t \ge 1\}$, if $x \in \mathbb{R}^n \setminus \{0\}$.