Introduction to Conformal Geometry and Quasiconformal Maps
 Department of Mathematics and Statistics
 Winter 2013 / Vuorinen

Exercise 1, 2013 File: icg1301.tex, 2013-1-6,17.28
N.B. Numbered results/ formulas refer to CGQM.

1. Let $0<a<1, b=a /\left(1+\sqrt{1-a^{2}}\right)$ and for $0<t<1$ let Y_{t} be the circle centered at $(t+1 / t) / 2$ and the segment $[t, 1 / t]$ as its diameter. Show Y_{t} is orthogonal to the unit circle and that Y_{b} intersects the unit circle at the point $p=\left(a, \sqrt{1-a^{2}}\right)$. Show that the point $(b, 0)$ is on the segment $[p, s], s=(0,-1)$. Find the point $q=\left(q_{1}, \sqrt{1-q_{1}^{2}}\right)$ in the upper half plane where Y_{a} intersects the unit circle and show that $(0,1), q,(1 / a, 0)$ are collinear.

Figure 1: The unit circle and orthogonal circles Y_{a}, Y_{b}.
2. Let $G \subset \mathbb{R}^{n}$ be a domain and $f: G \rightarrow \mathbb{R}$ a continuous function. Fix $b \in \partial G$. We say that f has a sequential limit α at b, if there exists a sequence $\left(b_{k}\right)$ in G with $b_{k} \rightarrow b$ and $f\left(b_{k}\right) \rightarrow \alpha$ when $k \rightarrow \infty$. Let $C(f, b)$ be the set of all sequential limits of f at b. Then obviously $C(f, b) \subset \overline{f(G)}$.
(a) Show that f has limit $\bar{f}(b)$ at b iff $C(f, b)=\{\bar{f}(b)\}$.
(b) Show that $C(f, b)=\cap_{k=1}^{\infty} \overline{f\left(G \cap B^{n}(b, 1 / k)\right)}$, if $b \neq \infty$.
(c) Let $G=\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ and $f: G \rightarrow(0, \infty)$ be the function $\overline{\operatorname{arct}} \tan (y / x) \in(0, \pi)$. What is $C(f, 0)$?
(d) Consider the map $f: B^{2} \rightarrow B^{2}, f(z)=\exp ((z+1) /(z-1))$. What is $C(f, 1)$?
3. Find a Möbius transformation

$$
z \mapsto \frac{a z+b}{c z+d}, \quad a d-b c \neq 0,
$$

which maps $\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ onto $B^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ such that $(-1,0,1) \mapsto(1, i,-1)[i=(0,1)]$.
4. A mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be Hölder continuous, if there exist constants $C, \beta>0$ such that $|f(x)-f(y)| \leq C|x-y|^{\beta}$ for all $x, y \in \mathbb{R}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Hölder continuous with exponent $\beta>1$. Show that f is a constant, equal to $f(0)$.
5.
(a) Let $G, G^{\prime} \subset \mathbb{R}^{n}$ be domains and $f: G \rightarrow G^{\prime}$ be a homeomorphism. For $x, y \in G$ define $m_{f}(x, y)=|f(x)-f(y)|$. Show that m_{f} is a metric.
(b) Let $\rho: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, \mathbb{R}_{+}=(0, \infty)$, be defined by $\rho(x, y)=|\log (x / y)|$. Show that ρ is a metric.
(c) Suppose that $u:\left(\mathbb{R}_{+}, \rho\right) \rightarrow\left(\mathbb{R}_{+}, \rho\right)$ is uniformly continuous. Show that $u(x) \leq A x^{B}$ for some constants A and B for all $x \geq 1$.
6. Show the following facts.
(a) Distinct points $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ are collinear iff $\left(z_{1}-z_{3}\right) /\left(z_{2}-z_{3}\right) \in \mathbb{R}$.
(b) Given three points $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, find a formula for the area of the positively oriented triangle $\left[z_{1}, z_{2}, z_{3}\right]$. Hint: One version of the formula is

$$
\left|z_{1}\left(\overline{z_{2}}-\overline{z_{3}}\right)+z_{2}\left(\overline{z_{3}}-\overline{z_{1}}\right)+z_{3}\left(\overline{z_{1}}-\overline{z_{2}}\right)\right| / 4 .
$$

Another variant is:

$$
\frac{1}{2} \operatorname{Im}\left(\overline{z_{1}} z_{2}+\overline{z_{2}} z_{3}+\overline{z_{3}} z_{1}\right)
$$

(c) Given three noncollinear points $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, find a formula for the center z of the circle through these points. Hint. There are various ways to write this. For instance, $z=D / d$ where

$$
\begin{gathered}
D=\left|z_{1}\right|^{2}\left(z_{2}-z_{3}\right)+\left|z_{2}\right|^{2}\left(z_{3}-z_{1}\right)+\left|z_{3}\right|^{2}\left(z_{1}-z_{2}\right), \\
d=z_{1}\left(\overline{z_{3}}-\overline{z_{2}}\right)+z_{2}\left(\overline{z_{1}}-\overline{z_{3}}\right)+z_{3}\left(\overline{z_{2}}-\overline{z_{1}}\right) .
\end{gathered}
$$

