Contents

Data analysis with R software

Data-analyysi R-ohjelmistolla

Tommi Härkänen

National Institute for Health and Welfare (THL), Helsinki E-mail: tommi.harkanen@helsinki.fi

University of Helsinki, February 12, 2013

Categorical covariates

Interaction of a categorical and a continuous covariate

Interaction of two categorical covariates

Data analysis with R software Categorical covariates

Level of measurement

Variables have been categorized into 4 categories ¹ :
Categorical variables Qualitative data.
Nominal No meaningful ordering, e.g. marital status.
Possible to estimate point probabilities
(prevalences), mode .
Ordinal Values are ordered but differences are not
meaningful, e.g. education: basic, middle,
high. Possible to estimate also median or
other quantiles .
Continuous variables Quantitative data.
Interval Differences are meaningful, e.g.
temperature in Celsius or Fahrenheit.
Possible to estimate also means and
standard deviations.
Ratio "Zero" exists, thus possible to present
relative differences. E.g. geographical
distances, age, height and weight.
¹ Stevens, S.S (June 7, 1946). "On the Theory of Scales of Measurement". Science

Data analysis with R software Categorical covariates

Qualitative and quantitative data in R

Categorical variables are of type factor

Nominal E.g.,

factor(c(9, 12, 17, 9, 17, 17), levels = c(9, 12, 17),
labels = c("basic", "middle", "high"))

[1] basic middle high basic high high
Levels: basic middle high

Ordinal Function ordered is used, e.g.

ordered(c(9, 12, 17, 9, 17, 17), levels = c(9, 12, 17), labels = c("basic", "middle", "high"))

[1] basic middle high basic high high
Levels: basic < middle < high</pre>

Continuous variables are numerical variables.

^{103 (2684): 677–680.}

Categorical covariate in a regression model

Subset "Ever had any pain in chest" of the NHANES data: weight, "get chest pain when walk uphill or hurry" and age

prop.table(table(nhanes[, "haf2"]))

##					
##	Yes	No	(HAF9)	Never	uphill/hurry
##	0.2852		0.6620		0.0528

Research question: "Are there differences in average weight between chest pain groups?"

Note that the age distributions differ between chest pain groups:

summary(lm(hsageir ~ haf2, data = nhanes))[["coefficients"]]

##		Estimate S	Std.	Error	t value	Pr(> t)
##	(Intercept)	50.35		0.492	102.38	0.00e+00
##	haf2No (HAF9)	-2.63		0.588	-4.48	7.59e-06
##	haf2Never uphill/hurry	19.03		1.261	15.09	1.87e-50

Data analysis with R software

Categorical covariates

Categorical covariate in a regression model

Change the reference level of chest pain variable

Usually the reference level is chosen to be the group with $\ensuremath{\textit{lowest risk}}$ or $\ensuremath{\textit{largest size}}.$

Here the group haf2=="No" is the largest, so choose that using relevel():

nhanes[, "haf2"] <- relevel(nhanes[, "haf2"], "No (HAF9)")
summary(lm(ham6s_kg ~ haf2 + hsageir + ham5s_m, data = nhanes))[["coefficien</pre>

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	-59.9785	3.6768	-16.31	2.16e-58
##	haf2Yes	1.8680	0.4949	3.77	1.62e-04
##	haf2Never uphill/hurry	-1.6492	1.0722	-1.54	1.24e-01
##	hsageir	0.0186	0.0112	1.66	9.70e-02
##	ham5s_m	79.8349	2.1418	37.27	5.48e-270

Note that the haf2No line has changed.

The regression coefficients correspond now to the differences

- haf2=="No" vs. haf2=="Yes" and
- haf2=="No" vs. haf2=="Never uphill/hurrv"

Categorical covariate in a regression model

Adjusting for confounders age and height

summary(lm(ham6s_kg ~ haf2 + hsageir + ham5s_m, data = nhanes))

	##							
	##	Call:						
	##	<pre>lm(formula = ham6s_kg ~</pre>	haf2	+ hsag	eir + ha	n5s_m, d	ata = 1	nhanes)
	##							
	##	Residuals:						
	##	Min 1Q Median	ЗQ	Max				
	##	-56.9 -10.9 -2.4	8.0	115.0				
	##							
	##	Coefficients:						
	##		Estima	te Std	. Error	t value	Pr(> t))
	##	(Intercept)	-58.11	05	3.6552	-15.90	< 2e-2	16 ***
	##	haf2No (HAF9)	-1.86	80	0.4949	-3.77	0.000	16 ***
	##	haf2Never uphill/hurry	-3.51	72	1.1097	-3.17	0.001	54 **
	##	hsageir	0.01	86	0.0112	1.66	0.0969	96 .
	##	ham5s_m	79.83	49	2.1418	37.27	< 2e-2	16 ***
	##							
	##	Signif codes. 0 '***'	0 001	'**'	0 01 '*'	0 05 '	0 1	' 1
Data an	alysis v	vith R software						

Categorical covariates

Categorical covariate in a regression model

Estimated regression lines

Expected weight for a 47.1 year old

Height (m)

Regression coefficients

Interaction of continuous and categorical covariates

Imaginary example in R: $lm(y \sim age + gender + age*gender)$

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	2.0					
age	0.1					
genderFemale	3.0					
age:genderFemale	-0.2					

Age	Gender	Linear predictor	Prediction
0	Male	$2.0 + 0 \times 0.1 + 0 \times 3.0 + (-0.2) \times 0 \times 0 =$	= 2.0
0	Female	$2.0 + 0 \times 0.1 + 1 \times 3.0 + (-0.2) \times 0 \times 0 =$	= 5.0
40	Male	$2.0 + 40 \times 0.1 + 0 \times 3.0 + (-0.2) \times 40 \times 0 =$	= 6.0
40	Female	$2.0 + 40 \times 0.1 + 1 \times 3.0 + (-0.2) \times 40 \times 1 =$	= 1.0

Data analysis with R software

\Box Interaction of a categorical and a continuous covariate

Regression coefficients

Interaction of continuous and categorical covariates

Data analysis with R software Interaction of two categorical covariates

Male

No (HAR14)

Example of interaction of two categorical covariates

Using Nhanes data. Regress weight on gender, smoking (har1, "Have you smoked 100+ cigarettes in life") and their interaction.

<pre>fit1 <- with(nhanes, lm(ham6s_kg ~ hssex + har1 + hssex * har1)) round(summary(fit1)\$coefficients, d = 2)</pre>							
##			Estimate Std.	Error	t value	Pr(> t)	
## (Intercept))		80.63	0.21	382.43	0.00	
## hssexFemale	e		-11.84	0.33	-35.73	0.00	
## har1No (HAF	314)		-0.96	0.34	-2.82	0.00	
<pre>## hssexFemale:har1No (HAR14)</pre>			0.17	0.47	0.36	0.72	
Gender	Smoking	Linea	ar predictor			Prediction	
Male	Yes	80.6	$+0 \times -11.8 + 0 >$	<-0.96 -	+0×0.17	= 80.6	
Female	Yes	80.6	$+1\times-11.8+0$	<-0.96 -	+0×0.17	= 68.8	

Female No (HAR14) $80.6 + 1 \times -11.8 + 1 \times -0.96 + 1 \times 0.17 = 68$

 $80.6 + 0 \times -11.8 + 1 \times -0.96 + 0 \times 0.17 = 79.7$