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Exercise 9

Solutions

1. a) Suppose G is a compact group and f € Map(G,R). Let V; be the vec-
tor subspace of Map(G,R) spanned by right translations of f i.e. by the set
(R, | g€ G}

Then the action R: G x Map(G,R) — Map(G,R), R(g, f') = Ryf’ (which
is continuous with respect to the sup-norm, see exercise 7.3) restricts to the
action R: R x Vy — V7.

Now suppose V; is finite-dimensional. Then the action R: G x V; — V}
is continuous with respect to the Euclidean topology in V%, since all norms
in a finite-dimensional space define Euclidean topology (this is proved in To-
pology I course). Hence R defines a continuous linear representation of G on
GL(Vy) (see exercise 8. 4).

Prove that f is a matrix coefficient of this representation (Hint: mapping
Vi = R, f"+— f'(e) is linear). For the definition of the matrix coefficient see
exercise 8.5).

b) Likewise assume f € Map(G,R) is such that the vector subspace Wy
of Map(G,R) spanned by left translations of f i.e. by the set {L, | g € G}
is finite-dimensional. Then L: G x Wy — Wy, L(g, f') = Ly-1f" is then a

continuous (with respect to the Euclidean topology of Wy) linear action of

G on finite-dimensional W; (Check this. Why we use inverse element g~' in

the definition of L, instead of simply g, like we did with action R?). Hence
it defines a continuous linear representation of G in GL(W/). Prove that the
mapping G — R, g — f(g~!) is a matrix coefficient of this representation.

Solution: a) We claim that L: V; — R, L(f’) = f’(e) is linear. Indeed
L(af"+bf") = (af + bf")(e) = af'(e) + bf"(e) = aL(f) + bL(f").
Suppose g € G. Then
L(Ryf) = (Ryf)(e) = fleg) = f(9)-

Since f € Vy and L: V; — R, this proves that f is a matrix coefficient of this
representation.

b) L is action, since L(e, ') = L.(f') = f’ and
L(g, L(d', f') = Lgfl(L<9/7f)) = Lg*(Lg’*lf/) = (Lg-10 Lg’*l)(f,) =
Lg-14-1 (f') = L(gg/)—lf/ = L(gg’, ).

Here we used the fact that L, o L, = Ly, (exercise 7.1).
Now the mapping L': Wy — R, L'(f') = f'(e) is linear - prove is the same as



in a). For every g € G we have

L'(L(g, f)) = L(g. f)(e) = Lg-1f(e) = fleg™") = f(g7)-

Hence g — f(g™') is a matrix coefficient of this representation.

. a) Suppose V is a finite-dimensional vector space, and let ey, ..., e, be basis
of V.
The dual space of V' is defined as

V*={L:V — R is linear}.

V* is a vector space in a natural way (how?). Recall from linear algebra how
the following facts are proved.

(i) Suppose ti,...,t, € R are arbitrary. Then there exists unique L € V*
such that L(e;) =t;,i=1,...,n.

(ii) By (i) there exists for every j € {1,...,n} an element ¢/ € V* such that
el(e;) = ;5. The set {',...,&"} is a basis of V*. In particular dim V* =
dim V.

(iii) Suppose A € (V*)* i.e. a linear mapping A: V* — R. Then there exists
unique v € V such that A = A,, where A,(L) = L(v). (Hint: prove that
v — A, is an injective linear mapping V' — (V*)*).

b) Suppose ¢: G — GL(V) is a continuous linear representation of a to-

pological group G in a finite-dimensional space V. Define $: G — GL(V*)
by
(L) (v) = L(p(g~ ' (v)), L e Vv e V.

Prove that é is a continuous linear representation of G in V'*.

¢) Suppose G is compact and f is a matrix coefficient of the representation
¢: G — GL(V) as in b). Prove that the mapping g — f(g~') is a matrix
representation of ¢.

Solution: a) The sum of two linear mappings L,L': V — R and scalar
multiplication are defined pointwise,

(L + L)(v) = L(v) + L'(v),
(cL)(v) = cL(v).

We leave it to the reader to verify that these operations are well-defined (i.e.
result is always also a linear mapping V' — R and make V* a vector space.
i) Suppose v € V. Since ey, ..., e, is a basis there exists unique linear repre-
sentation of the form

V= ai1€e] + ases + ...+ ayey,,

where a;,7 = 1,...,n are real numbers. Thus if L € V* is such that L(e;) = t;
are fixed, we must (by linearity) have

L(v) = ZaiL(vi),
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so L is unique. Conversely it is routine exercise in linear algebra to see that
L defined by this formula is linear.
(ii) Suppose L € V* is a linear combination of the form

L= A1E1 + A€ + ... + ApEn.
Then evaluating at e; gives us L(e;) = a; for all i. Hence the representation is
unique and the set {e',... £"} is thus linearly independent. Conversely if we
let a; = L(e;) as above and define a mapping L' = aie1 + asey + ... + ayp,
we see that L and L’ agree on the basis vectors, so by a) they must be the

same. Hence {€',...,e"} is actually a basis. In particular V' and V* have the
same dimension.

(iii) We define mapping A: V' — (V*)* by A(v) = A,, where A,(L) = L(v).
It is easy to verify that this mapping is linear. Moreover it is injective, since if
v € V is such that L(v) =0 for all L € V*, then v = 0. This is true since we
can take as L mapping € for every ¢ and hence if v = aje; +ages +. .. +a,en,
a; = €'(v) = 0, so v must be zero.
Now by a) dimV = dim V* = dim V** hence an injective linear mapping A
must be also surjective. This proves the claim.

b) First we check that é is a linear representation algebraically. First of all

every mapping ¢(g) is a linear mapping V* — V*, which is an easy check.
If g,¢' € G, then

¢(99)(L) = Lo¢((g9) ™) =Lod(g 'g7") =Lo(¢(¢d ) od(g™")) =
= (Log(g ")) od(g™") = d(¢)(L)od(g™") = d(g)(d(g)(L)) = ((g)0d(g)(L),

SO

also clearly ¢(e) = id.
Hence ¢: G — GL(V*) is a well-defined homomorphism of groups.

By exercise 8.4 it is enough to find a basis in V* such that entries ¢(g);;
of the matrix of representation are continuous with respect to that basis. Let
e1,...,e, beabasisof V and let {e!,... "} be a dual basis of V*. It is easy to
verify that with respect to this basis ¢(g)i; = (g)(e7)(e;) = & (d(g7") () =
¢(g~");i. In other words the matrix of ¢(g) is a transpose of the matrix ¢(g~".
Since the entries of the matrix ¢(g) are continuous functions of g (because ¢ is

continuous) and g — ¢g~! is continuous as well, it follows that g5 is continuous.

¢) Suppose f(g) = L(¢(g))v for some L € V*and v € V. Now A4,: V* - R
is linear, so

Flg7h) = Lodlg™)(v) = (d(9)(L)(v) = A(d(9)L),

so by definition g — f(g~!) is a matrix coefficient of representation gzg

3. Combine the previous exercises and the exercise 8.6 to prove the following
important result.



Suppose f € Map(G,R), G compact group. Then the following conditions
are equivalent:
i) f is a matrix coefficient of some continuous linear representation G —
GL(V), V finite-dimensional vector space.
ii) The vector subspace of Map(G,R) spanned by the set {R, | g € G} is
finite-dimensional.
iii) The vector subspace of Map(G,R) spanned by the set {L, | g € G} is
finite-dimensional.

Solution: In the Exercise 8.6 we have already shown that i) implies ii) and
iii). In the exercise 1 we have shown that ii) implies i). Finally suppose iii).
Then by exercise 1 mapping f defined by ¢Z(g) = f(g™!) is a matrix coefficient
of a certain linear representation ¢ in a finite-dimensional space V. By the
previous exercise the mapping g — f(g~!) is a matrix coefficient of a dual
representation in V*. But this mapping is precisely f and dual representation
is continuous linear representation in a finite-dimensional vector space, as the
previous exercise shows.

. Suppose V, V' are both finite-dimensional irreducible linear G-spaces. Sup-
pose L: V — V' is linear G-mapping. Prove that either L = 0 or L is an
isomorphism of vector spaces. (Hint: consider Ker L and Im L).

Solution: Suppose x € Ker L. Then
L(gz) = gL(x) = g-0=0,

since L is G-equivariant and ¢g: V' — V is linear. Hence Ker L is a linear
G-subspace of V. Since V' is irreducible, Ker L = {0} or Ker L = V. In the
latter case L = 0 and we are done. In case Ker L = {0} we see that L is
injective, and we continue by considering Im L. Suppose y = L(z) for some
x € V. Then

g9y = gL(z) = L(gx),
so Im L is also linear G-space. As above we conclude that ImL = 0 or
ImL = V’. In the first case L = 0 again and second case means that L

is a surjection.
Hence either L = 0 or L is a bijection.

. a) Suppose (V,()) is a finite-dimensional inner-product space and L € V*.
Prove that there exists unique v € V' such that

L(w) = (v,w) for all w € V.

Conclude the following: suppose G is a compact group and V is a finite-
dimensional linear G-space. Let (,) be G-invariant inner product in V. Pro-
ve that every matrix coefficient of the corresponding representation can be
written in the form

f(g) = {gv,w)

for some v, w € V.
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b) Suppose R",R™ are G-spaces, G-compact, w € V,w" € V'. Prove that
the mapping defined by

L(v) = /(}(gv, w)g~w'dg

is a linear G-mapping L: R" — R™. Here (,) is a G-invariant inner product
in V.

¢) Suppose V.V’ are finite-dimensional irreducible G-spaces, G-compact
and suppose V and V' are non-equivalent. Suppose f is a matrix coefficient
for the representation in V' and f’is a matrix coefficient for the representation

in V'. Prove that
| 1=
el

(Hint: You may assume V = R" V' = R™. Define L as above, represent f
and f’ as in a). Show that then [, ff' = (Lv,w), so if its not 0, L is not zero
mapping, which contradicts previous exercise).

Solution: a) For every v € V define a mapping L,: V — R by L,(w) =
(v, w). From the properties of the inner product it follows that L, is linear,
hence L, € V* and we can define a mapping A: V' — V* by A(v) = L,. We
are done once we prove that A is a bijection. Since dimV = dim V* < oo, it
is enough to prove that A is a linear injection. First we prove that A is linear.
Suppose v,v" € V,¢,d € R. Then, by the bilinearity of the inner product,

Alev 4+ dv')(w) = (cv + dv', w) = c{v,w) + d(v',w) = (cA(v) + dAW"))(w),
so A(ed + dv') = cA(v) +dA(v"). Suppose v € V is such that A(v) = 0. Then
(v,v) = A,(v) =0,

so again by the properties of the inner product v # 0. Hence A is injective
and we are done.

b) L is well-defined, since the integrand is clearly continuous.

L is linear:

L(co+dv') = /

G

/(c(gv,w)+d(gv',w>)g_1w’dg:c/(gv,w}g_lw’dg+d/<gv’,w)g_1w’dg = cL(v)+dL(v"),
a a a

since inner product is bilinear, every g acts lineary and Haar integral is linear.

(g(cv+ dv'),w)g™'w'dg = / (cgv + dgv', w)g~'w'dg =
G

Finally L is G-equivariant:
L(g'v) =/<gg’v7w>g‘1w’dg = /(gv,w>g/g‘1w’dg zg//<gv),w>g‘1w/dg =g'L(v).
G G G

Here we first made a translation change of the form ¢ — g¢’~! in the Haar
integral and then used the fact that ¢’ is linear, so commutes with integral.



¢)We may assume V = R"™ and V' = R™, so that we can integrate V' and
V’-valued functions. By the definition of the matrix coefficient and a) we see
that there exists v,w € V,v',w’ € V', such that

f(g) = (v, gw),
f'lg) = (', gu') = (g7, w),

where inner products are G-invariant inner products in V' and V’. Now

/fo'dgZ/G<v,9w>(g_lv’,w>d9: </ (v, gw)g~"v'dg, ).

G
Here we used the fact that inner product with fixed w’ in V’ is linear, so
commutes with intergal. Now we can write

/ f1'dg = (L(v),w),
G

where L(v) = [,(v,gw)g~"v' is linear G-mapping by b). By the exercise
4 L is either 0 or an isomorphism. But if its isomorphism, it means that
representations are equivalent, contrary to assumptions. Hence L = 0, so

/G f1'dg = (L(v), ) = 0.

6. Suppose V = R" is a linear G-space, G compact. Define L: V — V by

L(v) = / gv dg.
e
Prove that L is linear, L(V) = V¢ and L(v) = v for all v € V.

Solution: Linearity of L follows from linearity of integral and linearity of
each g: V — V. Suppose ¢’ € G. Then

9'L(v) :g’/vaszg’(gv) Z/G(g’g)v=/va=L(v)

by invariance of intergal and linearity of ¢/, which implies that it commutes
with integral. Hence L(v) € V¢ for all v € V.
Conversely if v € VC, then gv = v for all v € V, so

L(v):/gvdg:/vdgzv.
e @
In particular L(V) = V¢ and L(v) = v for all v € V.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



