Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 9
Solutions

1. a) Suppose G is a compact group and $f \in \operatorname{Map}(G, \mathbb{R})$. Let V_{f} be the vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by right translations of f i.e. by the set $\left\{R_{g} \mid g \in G\right\}$.
Then the action $R: G \times \operatorname{Map}(G, \mathbb{R}) \rightarrow \operatorname{Map}(G, \mathbb{R}), R\left(g, f^{\prime}\right)=R_{g} f^{\prime}$ (which is continuous with respect to the sup-norm, see exercise 7.3) restricts to the action $R: R \times V_{f} \rightarrow V_{f}$.

Now suppose V_{f} is finite-dimensional. Then the action $R: G \times V_{f} \rightarrow V_{f}$ is continuous with respect to the Euclidean topology in V_{f}, since all norms in a finite-dimensional space define Euclidean topology (this is proved in Topology I course). Hence R defines a continuous linear representation of G on $G L\left(V_{f}\right)$ (see exercise 8. 4).
Prove that f is a matrix coefficient of this representation (Hint: mapping $V_{f} \rightarrow \mathbb{R}, f^{\prime} \mapsto f^{\prime}(e)$ is linear). For the definition of the matrix coefficient see exercise 8.5).
b) Likewise assume $f \in \operatorname{Map}(G, \mathbb{R})$ is such that the vector subspace W_{f} of $\operatorname{Map}(G, \mathbb{R})$ spanned by left translations of f i.e. by the set $\left\{L_{g} \mid g \in G\right\}$ is finite-dimensional. Then $L: G \times W_{f} \rightarrow W_{f}, L\left(g, f^{\prime}\right)=L_{g^{-1}} f^{\prime}$ is then a continuous (with respect to the Euclidean topology of W_{f}) linear action of G on finite-dimensional W_{f} (Check this. Why we use inverse element g^{-1} in the definition of L, instead of simply g, like we did with action R ?). Hence it defines a continuous linear representation of G in $G L\left(W_{f}\right)$. Prove that the mapping $G \rightarrow \mathbb{R}, g \mapsto f\left(g^{-1}\right)$ is a matrix coefficient of this representation.

Solution: a) We claim that $L: V_{f} \rightarrow \mathbb{R}, L\left(f^{\prime}\right)=f^{\prime}(e)$ is linear. Indeed

$$
L\left(a f^{\prime}+b f^{\prime \prime}\right)=\left(a f^{\prime}+b f^{\prime \prime}\right)(e)=a f^{\prime}(e)+b f^{\prime \prime}(e)=a L\left(f^{\prime}\right)+b L\left(f^{\prime \prime}\right)
$$

Suppose $g \in G$. Then

$$
L\left(R_{g} f\right)=\left(R_{g} f\right)(e)=f(e g)=f(g) .
$$

Since $f \in V_{f}$ and $L: V_{f} \rightarrow \mathbb{R}$, this proves that f is a matrix coefficient of this representation.
b) L is action, since $L\left(e, f^{\prime}\right)=L_{e}\left(f^{\prime}\right)=f^{\prime}$ and

$$
\begin{aligned}
L\left(g, L\left(g^{\prime}, f^{\prime}\right)\right)= & L_{g^{-1}}\left(L\left(g^{\prime}, f\right)\right)=L_{g^{-1}}\left(L_{g^{\prime-1}} f^{\prime}\right)=\left(L_{g^{-1}} \circ L_{g^{\prime-1}}\right)\left(f^{\prime}\right)= \\
& L_{g^{\prime-1} g^{-1}}\left(f^{\prime}\right)=L_{\left(g g^{\prime}\right)^{-1}} f^{\prime}=L\left(g g^{\prime}, f^{\prime}\right) .
\end{aligned}
$$

Here we used the fact that $L_{g} \circ L_{h}=L_{h g}$ (exercise 7.1).
Now the mapping $L^{\prime}: W_{f} \rightarrow \mathbb{R}, L^{\prime}\left(f^{\prime}\right)=f^{\prime}(e)$ is linear - prove is the same as
in a). For every $g \in G$ we have

$$
L^{\prime}(L(g, f))=L(g, f)(e)=L_{g^{-1}} f(e)=f\left(e g^{-1}\right)=f\left(g^{-1}\right) .
$$

Hence $g \mapsto f\left(g^{-1}\right)$ is a matrix coefficient of this representation.
2. a) Suppose V is a finite-dimensional vector space, and let e_{1}, \ldots, e_{n} be basis of V.
The dual space of V is defined as

$$
V^{*}=\{L: V \rightarrow \mathbb{R} \text { is linear }\} .
$$

V^{*} is a vector space in a natural way (how?). Recall from linear algebra how the following facts are proved.
(i) Suppose $t_{1}, \ldots, t_{n} \in \mathbb{R}$ are arbitrary. Then there exists unique $L \in V^{*}$ such that $L\left(e_{i}\right)=t_{i}, i=1, \ldots, n$.
(ii) By (i) there exists for every $j \in\{1, \ldots, n\}$ an element $\varepsilon^{j} \in V^{*}$ such that $\varepsilon^{j}\left(e_{i}\right)=\delta_{i j}$. The set $\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ is a basis of V^{*}. In particular $\operatorname{dim} V^{*}=$ $\operatorname{dim} V$.
(iii) Suppose $A \in\left(V^{*}\right)^{*}$ i.e. a linear mapping $A: V^{*} \rightarrow \mathbb{R}$. Then there exists unique $v \in V$ such that $A=A_{v}$, where $A_{v}(L)=L(v)$. (Hint: prove that $v \mapsto A_{v}$ is an injective linear mapping $\left.V \rightarrow\left(V^{*}\right)^{*}\right)$.
b) Suppose $\phi: G \rightarrow G L(V)$ is a continuous linear representation of a topological group G in a finite-dimensional space V. Define $\hat{\phi}: G \rightarrow G L\left(V^{*}\right)$ by

$$
\hat{\phi}(L)(v)=L\left(\phi\left(g^{-1}(v)\right), L \in V^{*}, v \in V\right.
$$

Prove that $\hat{\phi}$ is a continuous linear representation of G in V^{*}.
c) Suppose G is compact and f is a matrix coefficient of the representation $\phi: G \rightarrow G L(V)$ as in b$)$. Prove that the mapping $g \mapsto f\left(g^{-1}\right)$ is a matrix representation of $\hat{\phi}$.

Solution: a) The sum of two linear mappings $L, L^{\prime}: V \rightarrow \mathbb{R}$ and scalar multiplication are defined pointwise,

$$
\begin{gathered}
\left(L+L^{\prime}\right)(v)=L(v)+L^{\prime}(v) \\
(c L)(v)=c L(v)
\end{gathered}
$$

We leave it to the reader to verify that these operations are well-defined (i.e. result is always also a linear mapping $V \rightarrow \mathbb{R}$ and make V^{*} a vector space. i) Suppose $v \in V$. Since e_{1}, \ldots, e_{n} is a basis there exists unique linear representation of the form

$$
v=a_{1} e_{1}+a_{2} e_{2}+\ldots+a_{n} e_{n}
$$

where $a_{i}, i=1, \ldots, n$ are real numbers. Thus if $L \in V^{*}$ is such that $L\left(e_{i}\right)=t_{i}$ are fixed, we must (by linearity) have

$$
L(v)=\sum_{i=1}^{n} a_{i} L\left(v_{i}\right),
$$

so L is unique. Conversely it is routine exercise in linear algebra to see that L defined by this formula is linear.
(ii) Suppose $L \in V^{*}$ is a linear combination of the form

$$
L=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\ldots+a_{n} \varepsilon_{n} .
$$

Then evaluating at e_{i} gives us $L\left(e_{i}\right)=a_{i}$ for all i. Hence the representation is unique and the set $\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ is thus linearly independent. Conversely if we let $a_{i}=L\left(e_{i}\right)$ as above and define a mapping $L^{\prime}=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\ldots+a_{n} \varepsilon_{n}$, we see that L and L^{\prime} agree on the basis vectors, so by a) they must be the same. Hence $\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ is actually a basis. In particular V and V^{*} have the same dimension.
(iii) We define mapping $A: V \rightarrow\left(V^{*}\right)^{*}$ by $A(v)=A_{v}$, where $A_{v}(L)=L(v)$. It is easy to verify that this mapping is linear. Moreover it is injective, since if $v \in V$ is such that $L(v)=0$ for all $L \in V^{*}$, then $v=0$. This is true since we can take as L mapping ε^{i} for every i and hence if $v=a_{1} e_{1}+a_{2} e_{2}+\ldots+a_{n} e_{n}$, $a_{i}=\varepsilon^{i}(v)=0$, so v must be zero.
Now by a) $\operatorname{dim} V=\operatorname{dim} V^{*}=\operatorname{dim} V^{* *}$, hence an injective linear mapping A must be also surjective. This proves the claim.
b) First we check that $\hat{\phi}$ is a linear representation algebraically. First of all every mapping $\hat{\phi}(g)$ is a linear mapping $V^{*} \rightarrow V^{*}$, which is an easy check. If $g, g^{\prime} \in G$, then

$$
\hat{\phi}\left(g g^{\prime}\right)(L)=L \circ \phi\left(\left(g g^{\prime}\right)^{-1}\right)=L \circ \phi\left(g^{\prime-1} g^{-1}\right)=L \circ\left(\phi\left(g^{\prime-1}\right) \circ \phi\left(g^{-1}\right)\right)=
$$

$$
=\left(L \circ \phi\left(g^{\prime-1}\right)\right) \circ \phi\left(g^{-1}\right)=\hat{\phi}\left(g^{\prime}\right)(L) \circ \phi\left(g^{-1}\right)=\hat{\phi}(g)\left(\hat{\phi}\left(g^{\prime}\right)(L)\right)=\left(\hat{\phi}(g) \circ \hat{\phi}\left(g^{\prime}\right)\right)(L),
$$ so

$$
\hat{\phi}\left(g g^{\prime}\right)=\hat{\phi}(g) \circ \hat{\phi}\left(g^{\prime}\right),
$$

also clearly $\hat{\phi}(e)=\mathrm{id}$.
Hence $\hat{\phi}: G \rightarrow G L\left(V^{*}\right)$ is a well-defined homomorphism of groups.
By exercise 8.4 it is enough to find a basis in V^{*} such that entries $\hat{\phi}(g)_{i j}$ of the matrix of representation are continuous with respect to that basis. Let e_{1}, \ldots, e_{n} be a basis of V and let $\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ be a dual basis of V^{*}. It is easy to verify that with respect to this basis $\hat{\phi}(g)_{i j}=\hat{\phi}(g)\left(\varepsilon^{j}\right)\left(e_{i}\right)=\varepsilon^{j}\left(\phi\left(g^{-1}\right)\left(e_{i}\right)=\right.$ $\phi\left(g^{-1}\right)_{j i}$. In other words the matrix of $\hat{\phi}(g)$ is a transpose of the matrix $\phi\left(g^{-1}\right.$. Since the entries of the matrix $\phi(g)$ are continuous functions of g (because ϕ is continuous) and $g \mapsto g^{-1}$ is continuous as well, it follows that $\hat{\phi}$ is continuous.
c) Suppose $f(g)=L(\phi(g)) v$ for some $L \in V^{*}$ and $v \in V$. Now $A_{v}: V^{*} \rightarrow \mathbb{R}$ is linear, so

$$
f\left(g^{-1}\right)=L \circ \phi\left(g^{-1}\right)(v)=(\hat{\phi}(g)(L))(v)=A_{v}(\hat{\phi}(g) L),
$$

so by definition $g \mapsto f\left(g^{-1}\right)$ is a matrix coefficient of representation $\hat{\phi}$.
3. Combine the previous exercises and the exercise 8.6 to prove the following important result.

Suppose $f \in \operatorname{Map}(G, \mathbb{R}), G$ compact group. Then the following conditions are equivalent:
i) f is a matrix coefficient of some continuous linear representation $G \rightarrow$ $G L(V), V$ finite-dimensional vector space.
ii) The vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by the set $\left\{R_{g} \mid g \in G\right\}$ is finite-dimensional.
iii) The vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by the set $\left\{L_{g} \mid g \in G\right\}$ is finite-dimensional.

Solution: In the Exercise 8.6 we have already shown that i) implies ii) and iii). In the exercise 1 we have shown that ii) implies i). Finally suppose iii). Then by exercise 1 mapping \hat{f} defined by $\hat{\phi}(g)=f\left(g^{-1}\right)$ is a matrix coefficient of a certain linear representation ϕ in a finite-dimensional space V. By the previous exercise the mapping $g \mapsto \hat{f}\left(g^{-1}\right)$ is a matrix coefficient of a dual representation in V^{*}. But this mapping is precisely f and dual representation is continuous linear representation in a finite-dimensional vector space, as the previous exercise shows.
4. Suppose V, V^{\prime} are both finite-dimensional irreducible linear G-spaces. Suppose $L: V \rightarrow V^{\prime}$ is linear G-mapping. Prove that either $L=0$ or L is an isomorphism of vector spaces. (Hint: consider $\operatorname{Ker} L$ and $\operatorname{Im} L$).

Solution: Suppose $x \in \operatorname{Ker} L$. Then

$$
L(g x)=g L(x)=g \cdot 0=0
$$

since L is G-equivariant and $g: V \rightarrow V$ is linear. Hence $\operatorname{Ker} L$ is a linear G-subspace of V. Since V is irreducible, $\operatorname{Ker} L=\{0\}$ or $\operatorname{Ker} L=V$. In the latter case $L=0$ and we are done. In case $\operatorname{Ker} L=\{0\}$ we see that L is injective, and we continue by considering $\operatorname{Im} L$. Suppose $y=L(x)$ for some $x \in V$. Then

$$
g y=g L(x)=L(g x),
$$

so $\operatorname{Im} L$ is also linear G-space. As above we conclude that $\operatorname{Im} L=0$ or $\operatorname{Im} L=V^{\prime}$. In the first case $L=0$ again and second case means that L is a surjection.
Hence either $L=0$ or L is a bijection.
5. a) Suppose $(V,\langle \rangle)$ is a finite-dimensional inner-product space and $L \in V^{*}$. Prove that there exists unique $v \in V$ such that

$$
L(w)=\langle v, w\rangle \text { for all } w \in V
$$

Conclude the following: suppose G is a compact group and V is a finitedimensional linear G-space. Let \langle,$\rangle be G$-invariant inner product in V. Prove that every matrix coefficient of the corresponding representation can be written in the form

$$
f(g)=\langle g v, w\rangle
$$

for some $v, w \in V$.
b) Suppose $\mathbb{R}^{n}, \mathbb{R}^{m}$ are G-spaces, G-compact, $w \in V, w^{\prime} \in V^{\prime}$. Prove that the mapping defined by

$$
L(v)=\int_{G}\langle g v, w\rangle g^{-1} w^{\prime} d g
$$

is a linear G-mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Here \langle,$\rangle is a G$-invariant inner product in V.
c) Suppose V, V^{\prime} are finite-dimensional irreducible G-spaces, G-compact and suppose V and V^{\prime} are non-equivalent. Suppose f is a matrix coefficient for the representation in V and f^{\prime} is a matrix coefficient for the representation in V^{\prime}. Prove that

$$
\int_{G} f f^{\prime}=0 .
$$

(Hint: You may assume $V=\mathbb{R}^{n}, V^{\prime}=\mathbb{R}^{m}$. Define L as above, represent f and f^{\prime} as in a). Show that then $\int_{G} f f^{\prime}=\langle L v, w\rangle$, so if its not $0, L$ is not zero mapping, which contradicts previous exercise).

Solution: a) For every $v \in V$ define a mapping $L_{v}: V \rightarrow \mathbb{R}$ by $L_{v}(w)=$ $\langle v, w\rangle$. From the properties of the inner product it follows that L_{v} is linear, hence $L_{v} \in V^{*}$ and we can define a mapping $A: V \rightarrow V^{*}$ by $A(v)=L_{v}$. We are done once we prove that A is a bijection. Since $\operatorname{dim} V=\operatorname{dim} V^{*}<\infty$, it is enough to prove that A is a linear injection. First we prove that A is linear. Suppose $v, v^{\prime} \in V, c, d \in \mathbb{R}$. Then, by the bilinearity of the inner product,
$A\left(c v+d v^{\prime}\right)(w)=\left\langle c v+d v^{\prime}, w\right\rangle=c\langle v, w\rangle+d\left\langle v^{\prime}, w\right\rangle=\left(c A(v)+d A\left(v^{\prime}\right)\right)(w)$,
so $A\left(c d+d v^{\prime}\right)=c A(v)+d A\left(v^{\prime}\right)$. Suppose $v \in V$ is such that $A(v)=0$. Then

$$
\langle v, v\rangle=A_{v}(v)=0,
$$

so again by the properties of the inner product $v \neq 0$. Hence A is injective and we are done.
b) L is well-defined, since the integrand is clearly continuous.
L is linear:

$$
\begin{gathered}
L\left(c v+d v^{\prime}\right)=\int_{G}\left\langle g\left(c v+d v^{\prime}\right), w\right\rangle g^{-1} w^{\prime} d g=\int_{G}\left\langle c g v+d g v^{\prime}, w\right\rangle g^{-1} w^{\prime} d g= \\
\int_{G}\left(c\langle g v, w\rangle+d\left\langle g v^{\prime}, w\right\rangle\right) g^{-1} w^{\prime} d g=c \int_{G}\langle g v, w\rangle g^{-1} w^{\prime} d g+d \int_{G}\left\langle g v^{\prime}, w\right\rangle g^{-1} w^{\prime} d g=c L(v)+d L\left(v^{\prime}\right),
\end{gathered}
$$

since inner product is bilinear, every g acts lineary and Haar integral is linear.
Finally L is G-equivariant:

$$
\left.L\left(g^{\prime} v\right)=\int_{G}\left\langle g g^{\prime} v, w\right\rangle g^{-1} w^{\prime} d g=\int_{G}\langle g v, w\rangle g^{\prime} g^{-1} w^{\prime} d g=g^{\prime} \int_{G}\langle g v), w\right\rangle g^{-1} w^{\prime} d g=g^{\prime} L(v) .
$$

Here we first made a translation change of the form $g \mapsto g g^{\prime-1}$ in the Haar integral and then used the fact that g^{\prime} is linear, so commutes with integral.
c) We may assume $V=\mathbb{R}^{n}$ and $V^{\prime}=\mathbb{R}^{m}$, so that we can integrate V and V^{\prime}-valued functions. By the definition of the matrix coefficient and a) we see that there exists $v, w \in V, v^{\prime}, w^{\prime} \in V^{\prime}$, such that

$$
\begin{gathered}
f(g)=\langle v, g w\rangle \\
f^{\prime}(g)=\left\langle v^{\prime}, g w^{\prime}\right\rangle=\left\langle g^{-1} v^{\prime}, w\right\rangle
\end{gathered}
$$

where inner products are G-invariant inner products in V and V^{\prime}. Now

$$
\int_{G} f f^{\prime} d g=\int_{G}\langle v, g w\rangle\left\langle g^{-1} v^{\prime}, w\right\rangle d g=\left\langle\int_{G}\langle v, g w\rangle g^{-1} v^{\prime} d g, w^{\prime}\right\rangle .
$$

Here we used the fact that inner product with fixed w^{\prime} in V^{\prime} is linear, so commutes with intergal. Now we can write

$$
\int_{G} f f^{\prime} d g=\left\langle L(v), w^{\prime}\right\rangle
$$

where $L(v)=\int_{G}\langle v, g w\rangle g^{-1} v^{\prime}$ is linear G-mapping by b). By the exercise $4 L$ is either 0 or an isomorphism. But if its isomorphism, it means that representations are equivalent, contrary to assumptions. Hence $L=0$, so

$$
\int_{G} f f^{\prime} d g=\left\langle L(v), w^{\prime}\right\rangle=0
$$

6. Suppose $V=\mathbb{R}^{n}$ is a linear G-space, G compact. Define $L: V \rightarrow V$ by

$$
L(v)=\int_{G} g v d g
$$

Prove that L is linear, $L(V)=V^{G}$ and $L(v)=v$ for all $v \in V^{G}$.
Solution: Linearity of L follows from linearity of integral and linearity of each $g: V \rightarrow V$. Suppose $g^{\prime} \in G$. Then

$$
g^{\prime} L(v)=g^{\prime} \int_{G} g v=\int_{G} g^{\prime}(g v)=\int_{G}\left(g^{\prime} g\right) v=\int_{G} g v=L(v)
$$

by invariance of intergal and linearity of g^{\prime}, which implies that it commutes with integral. Hence $L(v) \in V^{G}$ for all $v \in V$.
Conversely if $v \in V^{G}$, then $g v=v$ for all $v \in V$, so

$$
L(v)=\int_{G} g v d g=\int_{G} v d g=v
$$

In particular $L(V)=V^{G}$ and $L(v)=v$ for all $v \in V^{G}$.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, 60\%-4 points, $75 \%-5$ points.

