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1. a) Suppose G is a compact group and f ∈ Map(G,R). Let Vf be the vec-
tor subspace of Map(G,R) spanned by right translations of f i.e. by the set
{Rg | g ∈ G}.
Then the action R : G × Map(G,R) → Map(G,R), R(g, f ′) = Rgf

′ (which
is continuous with respect to the sup-norm, see exercise 7.3) restricts to the
action R : R× Vf → Vf .

Now suppose Vf is �nite-dimensional. Then the action R : G × Vf → Vf

is continuous with respect to the Euclidean topology in Vf , since all norms
in a �nite-dimensional space de�ne Euclidean topology (this is proved in To-
pology I course). Hence R de�nes a continuous linear representation of G on
GL(Vf ) (see exercise 8. 4).
Prove that f is a matrix coe�cient of this representation (Hint: mapping
Vf → R, f ′ 7→ f ′(e) is linear). For the de�nition of the matrix coe�cient see
exercise 8.5).

b) Likewise assume f ∈ Map(G,R) is such that the vector subspace Wf

of Map(G,R) spanned by left translations of f i.e. by the set {Lg | g ∈ G}
is �nite-dimensional. Then L : G × Wf → Wf , L(g, f

′) = Lg−1f ′ is then a
continuous (with respect to the Euclidean topology of Wf ) linear action of
G on �nite-dimensional Wf (Check this. Why we use inverse element g−1 in
the de�nition of L, instead of simply g, like we did with action R?). Hence
it de�nes a continuous linear representation of G in GL(Wf ). Prove that the
mapping G → R, g 7→ f(g−1) is a matrix coe�cient of this representation.

Solution: a) We claim that L : Vf → R, L(f ′) = f ′(e) is linear. Indeed

L(af ′ + bf ′′) = (af ′ + bf ′′)(e) = af ′(e) + bf ′′(e) = aL(f ′) + bL(f ′′).

Suppose g ∈ G. Then

L(Rgf) = (Rgf)(e) = f(eg) = f(g).

Since f ∈ Vf and L : Vf → R, this proves that f is a matrix coe�cient of this
representation.

b) L is action, since L(e, f ′) = Le(f
′) = f ′ and

L(g, L(g′, f ′)) = Lg−1(L(g′, f)) = Lg−1(Lg′−1f ′) = (Lg−1 ◦ Lg′−1)(f ′) =

Lg′−1g−1(f ′) = L(gg′)−1f ′ = L(gg′, f ′).

Here we used the fact that Lg ◦ Lh = Lhg (exercise 7.1).
Now the mapping L′ : Wf → R, L′(f ′) = f ′(e) is linear - prove is the same as
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in a). For every g ∈ G we have

L′(L(g, f)) = L(g, f)(e) = Lg−1f(e) = f(eg−1) = f(g−1).

Hence g 7→ f(g−1) is a matrix coe�cient of this representation.

2. a) Suppose V is a �nite-dimensional vector space, and let e1, . . . , en be basis
of V .
The dual space of V is de�ned as

V ∗ = {L : V → R is linear}.

V ∗ is a vector space in a natural way (how?). Recall from linear algebra how
the following facts are proved.
(i) Suppose t1, . . . , tn ∈ R are arbitrary. Then there exists unique L ∈ V ∗

such that L(ei) = ti, i = 1, . . . , n.
(ii) By (i) there exists for every j ∈ {1, . . . , n} an element εj ∈ V ∗ such that
εj(ei) = δij. The set {ε1, . . . , εn} is a basis of V ∗. In particular dimV ∗ =
dimV .
(iii) Suppose A ∈ (V ∗)∗ i.e. a linear mapping A : V ∗ → R. Then there exists
unique v ∈ V such that A = Av, where Av(L) = L(v). (Hint: prove that
v 7→ Av is an injective linear mapping V → (V ∗)∗).

b) Suppose ϕ : G → GL(V ) is a continuous linear representation of a to-

pological group G in a �nite-dimensional space V . De�ne ϕ̂ : G → GL(V ∗)
by

ϕ̂(L)(v) = L(ϕ(g−1(v)), L ∈ V ∗, v ∈ V.

Prove that ϕ̂ is a continuous linear representation of G in V ∗.

c) Suppose G is compact and f is a matrix coe�cient of the representation
ϕ : G → GL(V ) as in b). Prove that the mapping g 7→ f(g−1) is a matrix

representation of ϕ̂.

Solution: a) The sum of two linear mappings L,L′ : V → R and scalar
multiplication are de�ned pointwise,

(L+ L′)(v) = L(v) + L′(v),

(cL)(v) = cL(v).

We leave it to the reader to verify that these operations are well-de�ned (i.e.
result is always also a linear mapping V → R and make V ∗ a vector space.
i) Suppose v ∈ V . Since e1, . . . , en is a basis there exists unique linear repre-
sentation of the form

v = a1e1 + a2e2 + . . .+ anen,

where ai, i = 1, . . . , n are real numbers. Thus if L ∈ V ∗ is such that L(ei) = ti
are �xed, we must (by linearity) have

L(v) =
n∑

i=1

aiL(vi),
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so L is unique. Conversely it is routine exercise in linear algebra to see that
L de�ned by this formula is linear.
(ii) Suppose L ∈ V ∗ is a linear combination of the form

L = a1ε1 + a2ε2 + . . .+ anεn.

Then evaluating at ei gives us L(ei) = ai for all i. Hence the representation is
unique and the set {ε1, . . . , εn} is thus linearly independent. Conversely if we
let ai = L(ei) as above and de�ne a mapping L′ = a1ε1 + a2ε2 + . . . + anεn,
we see that L and L′ agree on the basis vectors, so by a) they must be the
same. Hence {ε1, . . . , εn} is actually a basis. In particular V and V ∗ have the
same dimension.

(iii) We de�ne mapping A : V → (V ∗)∗ by A(v) = Av, where Av(L) = L(v).
It is easy to verify that this mapping is linear. Moreover it is injective, since if
v ∈ V is such that L(v) = 0 for all L ∈ V ∗, then v = 0. This is true since we
can take as L mapping εi for every i and hence if v = a1e1+a2e2+ . . .+anen,
ai = εi(v) = 0, so v must be zero.
Now by a) dimV = dimV ∗ = dimV ∗∗, hence an injective linear mapping A
must be also surjective. This proves the claim.

b) First we check that ϕ̂ is a linear representation algebraically. First of all

every mapping ϕ̂(g) is a linear mapping V ∗ → V ∗, which is an easy check.
If g, g′ ∈ G, then

ϕ̂(gg′)(L) = L ◦ ϕ((gg′)−1) = L ◦ ϕ(g′−1g−1) = L ◦ (ϕ(g′−1) ◦ ϕ(g−1)) =

= (L◦ϕ(g′−1))◦ϕ(g−1) = ϕ̂(g′)(L)◦ϕ(g−1) = ϕ̂(g)(ϕ̂(g′)(L)) = (ϕ̂(g)◦ ϕ̂(g′))(L),
so

ϕ̂(gg′) = ϕ̂(g) ◦ ϕ̂(g′),
also clearly ϕ̂(e) = id.

Hence ϕ̂ : G → GL(V ∗) is a well-de�ned homomorphism of groups.

By exercise 8.4 it is enough to �nd a basis in V ∗ such that entries ϕ̂(g)ij
of the matrix of representation are continuous with respect to that basis. Let
e1, . . . , en be a basis of V and let {ε1, . . . , εn} be a dual basis of V ∗. It is easy to

verify that with respect to this basis ϕ̂(g)ij = ϕ̂(g)(εj)(ei) = εj(ϕ(g−1)(ei) =

ϕ(g−1)ji. In other words the matrix of ϕ̂(g) is a transpose of the matrix ϕ(g−1.
Since the entries of the matrix ϕ(g) are continuous functions of g (because ϕ is

continuous) and g 7→ g−1 is continuous as well, it follows that ϕ̂ is continuous.

c) Suppose f(g) = L(ϕ(g))v for some L ∈ V ∗ and v ∈ V . Now Av : V
∗ → R

is linear, so

f(g−1) = L ◦ ϕ(g−1)(v) = (ϕ̂(g)(L))(v) = Av(ϕ̂(g)L),

so by de�nition g 7→ f(g−1) is a matrix coe�cient of representation ϕ̂.

3. Combine the previous exercises and the exercise 8.6 to prove the following
important result.
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Suppose f ∈ Map(G,R), G compact group. Then the following conditions
are equivalent:
i) f is a matrix coe�cient of some continuous linear representation G →
GL(V ), V �nite-dimensional vector space.
ii) The vector subspace of Map(G,R) spanned by the set {Rg | g ∈ G} is
�nite-dimensional.
iii) The vector subspace of Map(G,R) spanned by the set {Lg | g ∈ G} is
�nite-dimensional.

Solution: In the Exercise 8.6 we have already shown that i) implies ii) and
iii). In the exercise 1 we have shown that ii) implies i). Finally suppose iii).

Then by exercise 1 mapping f̂ de�ned by ϕ̂(g) = f(g−1) is a matrix coe�cient
of a certain linear representation ϕ in a �nite-dimensional space V . By the
previous exercise the mapping g 7→ f̂(g−1) is a matrix coe�cient of a dual
representation in V ∗. But this mapping is precisely f and dual representation
is continuous linear representation in a �nite-dimensional vector space, as the
previous exercise shows.

4. Suppose V, V ′ are both �nite-dimensional irreducible linear G-spaces. Sup-
pose L : V → V ′ is linear G-mapping. Prove that either L = 0 or L is an
isomorphism of vector spaces. (Hint: consider KerL and ImL).

Solution: Suppose x ∈ KerL. Then

L(gx) = gL(x) = g · 0 = 0,

since L is G-equivariant and g : V → V is linear. Hence KerL is a linear
G-subspace of V . Since V is irreducible, KerL = {0} or KerL = V . In the
latter case L = 0 and we are done. In case KerL = {0} we see that L is
injective, and we continue by considering ImL. Suppose y = L(x) for some
x ∈ V . Then

gy = gL(x) = L(gx),

so ImL is also linear G-space. As above we conclude that ImL = 0 or
ImL = V ′. In the �rst case L = 0 again and second case means that L
is a surjection.
Hence either L = 0 or L is a bijection.

5. a) Suppose (V, ⟨⟩) is a �nite-dimensional inner-product space and L ∈ V ∗.
Prove that there exists unique v ∈ V such that

L(w) = ⟨v, w⟩ for all w ∈ V.

Conclude the following: suppose G is a compact group and V is a �nite-
dimensional linear G-space. Let ⟨, ⟩ be G-invariant inner product in V . Pro-
ve that every matrix coe�cient of the corresponding representation can be
written in the form

f(g) = ⟨gv, w⟩
for some v, w ∈ V .
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b) Suppose Rn,Rm are G-spaces, G-compact, w ∈ V,w′ ∈ V ′. Prove that
the mapping de�ned by

L(v) =

∫
G

⟨gv, w⟩g−1w′dg

is a linear G-mapping L : Rn → Rm. Here ⟨, ⟩ is a G-invariant inner product
in V .

c) Suppose V, V ′ are �nite-dimensional irreducible G-spaces, G-compact
and suppose V and V ′ are non-equivalent. Suppose f is a matrix coe�cient
for the representation in V and f ′ is a matrix coe�cient for the representation
in V ′. Prove that ∫

G

ff ′ = 0.

(Hint: You may assume V = Rn, V ′ = Rm. De�ne L as above, represent f
and f ′ as in a). Show that then

∫
G
ff ′ = ⟨Lv,w⟩, so if its not 0, L is not zero

mapping, which contradicts previous exercise).

Solution: a) For every v ∈ V de�ne a mapping Lv : V → R by Lv(w) =
⟨v, w⟩. From the properties of the inner product it follows that Lv is linear,
hence Lv ∈ V ∗ and we can de�ne a mapping A : V → V ∗ by A(v) = Lv. We
are done once we prove that A is a bijection. Since dimV = dimV ∗ < ∞, it
is enough to prove that A is a linear injection. First we prove that A is linear.
Suppose v, v′ ∈ V, c, d ∈ R. Then, by the bilinearity of the inner product,

A(cv + dv′)(w) = ⟨cv + dv′, w⟩ = c⟨v, w⟩+ d⟨v′, w⟩ = (cA(v) + dA(v′))(w),

so A(cd+ dv′) = cA(v) + dA(v′). Suppose v ∈ V is such that A(v) = 0. Then

⟨v, v⟩ = Av(v) = 0,

so again by the properties of the inner product v ̸= 0. Hence A is injective
and we are done.

b)L is well-de�ned, since the integrand is clearly continuous.

L is linear:

L(cv + dv′) =

∫
G

⟨g(cv + dv′), w⟩g−1w′dg =

∫
G

⟨cgv + dgv′, w⟩g−1w′dg =∫
G

(c⟨gv, w⟩+d⟨gv′, w⟩)g−1w′dg = c

∫
G

⟨gv, w⟩g−1w′dg+d

∫
G

⟨gv′, w⟩g−1w′dg = cL(v)+dL(v′),

since inner product is bilinear, every g acts lineary and Haar integral is linear.

Finally L is G-equivariant:

L(g′v) =

∫
G

⟨gg′v, w⟩g−1w′dg =

∫
G

⟨gv, w⟩g′g−1w′dg = g′
∫
G

⟨gv), w⟩g−1w′dg = g′L(v).

Here we �rst made a translation change of the form g 7→ gg′−1 in the Haar
integral and then used the fact that g′ is linear, so commutes with integral.
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c)We may assume V = Rn and V ′ = Rm, so that we can integrate V and
V ′-valued functions. By the de�nition of the matrix coe�cient and a) we see
that there exists v, w ∈ V, v′, w′ ∈ V ′, such that

f(g) = ⟨v, gw⟩,
f ′(g) = ⟨v′, gw′⟩ = ⟨g−1v′, w⟩,

where inner products are G-invariant inner products in V and V ′. Now∫
G

ff ′dg =

∫
G

⟨v, gw⟩⟨g−1v′, w⟩dg = ⟨
∫
G

⟨v, gw⟩g−1v′dg, w′⟩.

Here we used the fact that inner product with �xed w′ in V ′ is linear, so
commutes with intergal. Now we can write∫

G

ff ′dg = ⟨L(v), w′⟩,

where L(v) =
∫
G
⟨v, gw⟩g−1v′ is linear G-mapping by b). By the exercise

4 L is either 0 or an isomorphism. But if its isomorphism, it means that
representations are equivalent, contrary to assumptions. Hence L = 0, so∫

G

ff ′dg = ⟨L(v), w′⟩ = 0.

6. Suppose V = Rn is a linear G-space, G compact. De�ne L : V → V by

L(v) =

∫
G

gv dg.

Prove that L is linear, L(V ) = V G and L(v) = v for all v ∈ V G.

Solution: Linearity of L follows from linearity of integral and linearity of
each g : V → V . Suppose g′ ∈ G. Then

g′L(v) = g′
∫
G

gv =

∫
G

g′(gv) =

∫
G

(g′g)v =

∫
G

gv = L(v)

by invariance of intergal and linearity of g′, which implies that it commutes
with integral. Hence L(v) ∈ V G for all v ∈ V .
Conversely if v ∈ V G, then gv = v for all v ∈ V , so

L(v) =

∫
G

gv dg =

∫
G

v dg = v.

In particular L(V ) = V G and L(v) = v for all v ∈ V G.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


