Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 9 26-30.03.2012

1. a) Suppose G is a compact group and $f \in Map(G, \mathbb{R})$. Let V_f be the vector subspace of $Map(G, \mathbb{R})$ spanned by right translations of f i.e. by the set $\{R_g \mid g \in G\}$. Then the action $P_F(G \ltimes Map(G, \mathbb{R})) \to Map(G, \mathbb{R})$, P(g, f') = P(f'), where f' is the set of the set of f' is the set of f' is

Then the action $R: G \times Map(G, \mathbb{R}) \to Map(G, \mathbb{R}), R(g, f') = R_g f'$ (which is continuous with respect to the sup-norm, see exercise 7.3) restricts to the action $R: R \times V_f \to V_f$.

Now suppose V_f is finite-dimensional. Then the action $R: G \times V_f \to V_f$ is continuous with respect to the Euclidean topology in V_f , since all norms in a finite-dimensional space define Euclidean topology (this is proved in Topology I course). Hence R defines a continuous linear representation of G on $GL(V_f)$ (see exercise 8. 4).

Prove that f is a matrix coefficient of this representation (Hint: mapping $V_f \to \mathbb{R}, f' \mapsto f'(e)$ is linear). For the definition of the matrix coefficient see exercise 8.5).

b) Likewise assume $f \in Map(G, \mathbb{R})$ is such that the vector subspace W_f of $Map(G, \mathbb{R})$ spanned by left translations of f i.e. by the set $\{L_g \mid g \in G\}$ is finite-dimensional. Then $L: G \times W_f \to W_f$, $L(g, f') = L_{g^{-1}}f'$ is then a continuous (with respect to the Euclidean topology of W_f) linear action of G on finite-dimensional W_f (Check this. Why we use inverse element g^{-1} in the definition of L, instead of simply g, like we did with action R?). Hence it defines a continuous linear representation of G in $GL(W_f)$. Prove that the mapping $G \to \mathbb{R}, g \mapsto f(g^{-1})$ is a matrix coefficient of this representation.

2. a) Suppose V is a finite-dimensional vector space, and let e_1, \ldots, e_n be basis of V.

The dual space of V is defined as

$$V^* = \{ L \colon V \to \mathbb{R} \text{ is linear} \}.$$

 V^* is a vector space in a natural way (how?). Recall from linear algebra how the following facts are proved.

(i) Suppose $t_1, \ldots, t_n \in \mathbb{R}$ are arbitrary. Then there exists unique $L \in V^*$ such that $L(e_i) = t_i, i = 1, \ldots, n$.

(ii) By (i) there exists for every $j \in \{1, ..., n\}$ an element $\varepsilon^j \in V^*$ such that $\varepsilon^j(e_i) = \delta_{ij}$. The set $\{\varepsilon^1, ..., \varepsilon^n\}$ is a basis of V^* . In particular dim $V^* = \dim V$.

(iii) Suppose $A \in (V^*)^*$ i.e. a linear mapping $A: V^* \to \mathbb{R}$. Then there exists unique $v \in V$ such that $A = A_v$, where $A_v(L) = L(v)$. (Hint: prove that

 $v \mapsto A_v$ is an injective linear mapping $V \to (V^*)^*$).

b) Suppose $\phi: G \to GL(V)$ is a continuous linear representation of a topological group G in a finite-dimensional space V. Define $\hat{\phi}: G \to GL(V^*)$ by

$$\hat{\phi}(L)(v) = L(\phi(g^{-1}(v)), L \in V^*, v \in V.$$

Prove that $\hat{\phi}$ is a continuous linear representation of G in V^* .

c) Suppose G is compact and f is a matrix coefficient of the representation $\phi: G \to GL(V)$ as in b). Prove that the mapping $g \mapsto f(g^{-1})$ is a matrix representation of $\hat{\phi}$.

3. Combine the previous exercises and the exercise 8.6 to prove the following important result.

Suppose $f \in Map(G, \mathbb{R})$, G compact group. Then the following conditions are equivalent:

i) f is a matrix coefficient of some continuous linear representation $G \rightarrow GL(V)$, V finite-dimensional vector space.

ii) The vector subspace of $Map(G, \mathbb{R})$ spanned by the set $\{R_g \mid g \in G\}$ is finite-dimensional.

iii) The vector subspace of $Map(G, \mathbb{R})$ spanned by the set $\{L_g \mid g \in G\}$ is finite-dimensional.

- 4. Suppose V, V' are both finite-dimensional irreducible linear G-spaces. Suppose $L: V \to V'$ is linear G-mapping. Prove that either L = 0 or L is an isomorphism of vector spaces. (Hint: consider Ker L and Im L).
- 5. a) Suppose $(V, \langle \rangle)$ is a finite-dimensional inner-product space and $L \in V^*$. Prove that there exists unique $v \in V$ such that

$$L(w) = \langle v, w \rangle$$
 for all $w \in W$.

Conclude the following: suppose G is a compact group and V is a finitedimensional linear G-space. Let \langle, \rangle be G-invariant inner product in V. Prove that every matrix coefficient of the corresponding representation can be written in the form

$$f(g) = \langle gv, w \rangle$$

for some $v, w \in V$.

b) Suppose $\mathbb{R}^n, \mathbb{R}^m$ are G-spaces, G-compact, $w \in V, w' \in V'$. Prove that the mapping defined by

$$L(v) = \int_G \langle gv, w \rangle g^{-1} w' dg$$

is a linear G-mapping $L \colon \mathbb{R}^n \to \mathbb{R}^m$. Here \langle, \rangle is a G-invariant inner product in V.

c) Suppose V, V' are finite-dimensional irreducible *G*-spaces, *G*-compact and suppose *V* and *V'* are non-equivalent. Suppose *f* is a matrix coefficient for the representation in *V* and *f'* is a matrix coefficient for the representation in *V'*. Prove that

$$\int_G f f' = 0.$$

(Hint: You may assume $V = \mathbb{R}^n, V' = \mathbb{R}^m$. Define L as above, represent f and f' as in a). Show that then $\int_G ff' = \langle Lv, w \rangle$, so if its not 0, L is not zero mapping, which contradicts previous exercise).

6. Suppose $V = \mathbb{R}^n$ is a linear G-space, G compact. Define $L \colon V \to V$ by

$$L(v) = \int_G gv \, dg.$$

Prove that L is linear, $L(V) = V^G$ and L(v) = v for all $v \in V^G$.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.