Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 9
26-30.03.2012

1. a) Suppose G is a compact group and $f \in \operatorname{Map}(G, \mathbb{R})$. Let V_{f} be the vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by right translations of f i.e. by the set $\left\{R_{g} \mid g \in G\right\}$.
Then the action $R: G \times \operatorname{Map}(G, \mathbb{R}) \rightarrow \operatorname{Map}(G, \mathbb{R}), R\left(g, f^{\prime}\right)=R_{g} f^{\prime}($ which is continuous with respect to the sup-norm, see exercise 7.3) restricts to the action $R: R \times V_{f} \rightarrow V_{f}$.

Now suppose V_{f} is finite-dimensional. Then the action $R: G \times V_{f} \rightarrow V_{f}$ is continuous with respect to the Euclidean topology in V_{f}, since all norms in a finite-dimensional space define Euclidean topology (this is proved in Topology I course). Hence R defines a continuous linear representation of G on $G L\left(V_{f}\right)$ (see exercise 8. 4).
Prove that f is a matrix coefficient of this representation (Hint: mapping $V_{f} \rightarrow \mathbb{R}, f^{\prime} \mapsto f^{\prime}(e)$ is linear). For the definition of the matrix coefficient see exercise 8.5).
b) Likewise assume $f \in \operatorname{Map}(G, \mathbb{R})$ is such that the vector subspace W_{f} of $\operatorname{Map}(G, \mathbb{R})$ spanned by left translations of f i.e. by the set $\left\{L_{g} \mid g \in G\right\}$ is finite-dimensional. Then $L: G \times W_{f} \rightarrow W_{f}, L\left(g, f^{\prime}\right)=L_{g^{-1}} f^{\prime}$ is then a continuous (with respect to the Euclidean topology of W_{f}) linear action of G on finite-dimensional W_{f} (Check this. Why we use inverse element g^{-1} in the definition of L, instead of simply g, like we did with action R ?). Hence it defines a continuous linear representation of G in $G L\left(W_{f}\right)$. Prove that the mapping $G \rightarrow \mathbb{R}, g \mapsto f\left(g^{-1}\right)$ is a matrix coefficient of this representation.
2. a) Suppose V is a finite-dimensional vector space, and let e_{1}, \ldots, e_{n} be basis of V.
The dual space of V is defined as

$$
V^{*}=\{L: V \rightarrow \mathbb{R} \text { is linear }\} .
$$

V^{*} is a vector space in a natural way (how?). Recall from linear algebra how the following facts are proved.
(i) Suppose $t_{1}, \ldots, t_{n} \in \mathbb{R}$ are arbitrary. Then there exists unique $L \in V^{*}$ such that $L\left(e_{i}\right)=t_{i}, i=1, \ldots, n$.
(ii) By (i) there exists for every $j \in\{1, \ldots, n\}$ an element $\varepsilon^{j} \in V^{*}$ such that $\varepsilon^{j}\left(e_{i}\right)=\delta_{i j}$. The set $\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ is a basis of V^{*}. In particular $\operatorname{dim} V^{*}=$ $\operatorname{dim} V$.
(iii) Suppose $A \in\left(V^{*}\right)^{*}$ i.e. a linear mapping $A: V^{*} \rightarrow \mathbb{R}$. Then there exists unique $v \in V$ such that $A=A_{v}$, where $A_{v}(L)=L(v)$. (Hint: prove that
$v \mapsto A_{v}$ is an injective linear mapping $\left.V \rightarrow\left(V^{*}\right)^{*}\right)$.
b) Suppose $\phi: G \rightarrow G L(V)$ is a continuous linear representation of a topological group G in a finite-dimensional space V. Define $\hat{\phi}: G \rightarrow G L\left(V^{*}\right)$ by

$$
\hat{\phi}(L)(v)=L\left(\phi\left(g^{-1}(v)\right), L \in V^{*}, v \in V .\right.
$$

Prove that $\hat{\phi}$ is a continuous linear representation of G in V^{*}.
c) Suppose G is compact and f is a matrix coefficient of the representation $\phi: G \rightarrow G L(V)$ as in b). Prove that the mapping $g \mapsto f\left(g^{-1}\right)$ is a matrix representation of $\hat{\phi}$.
3. Combine the previous exercises and the exercise 8.6 to prove the following important result.

Suppose $f \in \operatorname{Map}(G, \mathbb{R}), G$ compact group. Then the following conditions are equivalent:
i) f is a matrix coefficient of some continuous linear representation $G \rightarrow$ $G L(V), V$ finite-dimensional vector space.
ii) The vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by the set $\left\{R_{g} \mid g \in G\right\}$ is finite-dimensional.
iii) The vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by the set $\left\{L_{g} \mid g \in G\right\}$ is finite-dimensional.
4. Suppose V, V^{\prime} are both finite-dimensional irreducible linear G-spaces. Suppose $L: V \rightarrow V^{\prime}$ is linear G-mapping. Prove that either $L=0$ or L is an isomorphism of vector spaces. (Hint: consider $\operatorname{Ker} L$ and $\operatorname{Im} L$).
5. a) Suppose $(V,\langle \rangle)$ is a finite-dimensional inner-product space and $L \in V^{*}$. Prove that there exists unique $v \in V$ such that

$$
L(w)=\langle v, w\rangle \text { for all } w \in W
$$

Conclude the following: suppose G is a compact group and V is a finitedimensional linear G-space. Let \langle,$\rangle be G$-invariant inner product in V. Prove that every matrix coefficient of the corresponding representation can be written in the form

$$
f(g)=\langle g v, w\rangle
$$

for some $v, w \in V$.
b) Suppose $\mathbb{R}^{n}, \mathbb{R}^{m}$ are G-spaces, G-compact, $w \in V, w^{\prime} \in V^{\prime}$. Prove that the mapping defined by

$$
L(v)=\int_{G}\langle g v, w\rangle g^{-1} w^{\prime} d g
$$

is a linear G-mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Here \langle,$\rangle is a G$-invariant inner product in V.
c) Suppose V, V^{\prime} are finite-dimensional irreducible G-spaces, G-compact and suppose V and V^{\prime} are non-equivalent. Suppose f is a matrix coefficient for the representation in V and f^{\prime} is a matrix coefficient for the representation in V^{\prime}. Prove that

$$
\int_{G} f f^{\prime}=0 .
$$

(Hint: You may assume $V=\mathbb{R}^{n}, V^{\prime}=\mathbb{R}^{m}$. Define L as above, represent f and f^{\prime} as in a). Show that then $\int_{G} f f^{\prime}=\langle L v, w\rangle$, so if its not $0, L$ is not zero mapping, which contradicts previous exercise).
6. Suppose $V=\mathbb{R}^{n}$ is a linear G-space, G compact. Define $L: V \rightarrow V$ by

$$
L(v)=\int_{G} g v d g .
$$

Prove that L is linear, $L(V)=V^{G}$ and $L(v)=v$ for all $v \in V^{G}$.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

