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Exercise 8

Solutions

1. Consider the compact group S* (with the standard multiplication of complex
numbers). Let p: R — S* be defined by

p(t) = ™ = cos(2n(t)) + isin(27(t)).

Prove that the Haar integral for S! is given by the formula

[ t@ae = [ (rona

for all continuous f: S' — R. Here the integral of the right side is the usual
Riemann integral on reals.

Solution: It is enough to check that the mapping I: Map(S',R) — R
defined by

1(f) = (R) / (f o p)(t)dt

satisfies all properties of the Haar integral. The linearity of I as well as the
fact that I(f) > 0if f > 0 are obvious.

(1) = (R)/O (1op)(t)dt:(R)/0 1dt = 1.

Finally suppose y € S! is arbitrary. There exists s € [0, 1] such that p(s) = y.
Now

I(R,(f)) = (R) / f(p(t)y)dt = (R) / Fp(t)p(s))dt = (R) / F(p(t + 5))dt

since p is a group homomorphism. By the properties of the Riemann integral

B [ ptptersa = (@ " /f Nat+R) [ o).

1

Since p is periodic with period 1 it follows that

(R) 11+5f /f (t-1)) /f

hence finally we obtain

1R = @) [ s+ @) [ stoenie= ) [ oo = 1)

Since S! is abelian (or by exercise 7.4) this is enough.
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2. Let n € N and define f: S' — S by f(2) = 2. Use the previous exercise to

calculate the value of the Haar integral [ f (where we think of f as mapping
f: St — R?).

Solution: If n =0 f is a constant function 1, so [ f = 1. Otherwise

1 1

/f = (/ cosantdt,/ sin 2mntdt) = (0,0) = 0.

0 0

Suppose V is an n-dimensional vector space, n € N. Let A: V — R” be a
linear isomorphism. Define Euclidean topology on V' by requiring that A
is a homeomorphism.
a) Show that this topology is uniquely defined and does not depend on the
choice of the isomorphism A.
b) Suppose V,W are finite-dimensional vector spaces and L: V — W is a
linear mapping. Show that L is continuous with respect to the Euclidean
topologies on V and .
(Hint: prove b) first and apply it to the identity mapping to derive a)).
¢) Let GL(V) be the group of all linear isomorphisms L: V' — V (with respect
to the composition of mappings) and let v = {vy, ..., v, } be an (ordered) basis
of V. Show that the mapping

ty: GL(V) — GL(n,R)

defined by p,(A) = [A],. (the matrix of A with respect to the basis v) is
an isomorphism of groups and the topology co-induced by u, in the group
GL(V) does not depend on the choice of the basis of V. Show that GL(V)
is a topological group with respect to this topology (also referred to as the
Euclidean topology of the group GL(V)).

Solution: Suppose A: V = R™ B: W = R™ are linear isomorphisms
and give V topology induced by A and W topology induced by B. Suppose
L:V — W is linear. Then L' = Bo Lo A7': R®" — R™ is a linear mapping
between spaces R", R™ and such a mapping is always continuous with respect
to the standard topologies of R" R™. Since A and B are now homeomorp-
hisms, L is continuous. In particular b) is true.

Now suppose V is given two topologies 71, 75 using different isomorphisms
A AV — R Then id: (V,7) — (V,7) and id™! = id: (V,7) — (V,71)

are linear, so are continuous by what we already proved. Hence 7 = 7.

To prove c¢) first notice that the set {L: V' — V | L is linear } = W has
the natural structure of finite-dimensional vector space, dim W = (dim V)2
The mapping u, can be extended to a linear isomorphism

fy: W — M(n;R)
which is defined by the same formula - j,(A) = [A],,,. Now by the first part

of this exercise the topology of W induced by pu, does not depend on v, so
the same is true for the relative topology on GL(V).
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4. Suppose G is a group and V' is a finite-dimensional vector space. No topologies
are considered (yet). A homomorphism of groups ¢: G — GL(V) is called a
linear representation of G in V. A mapping ®: G x V — V, ®(g,v) = gv
is called linear action of G on V if it satisfies algebraic conditions of the
action i.e.
i)ev = v for all v € V', e neutral element of G,
ii)(gg )v = g(g'v) for g,¢' € G,v eV
and also
iii)the mapping ®,: V — V defined by v — gv is linear for every g € G.

a) Suppose ¢: G — GL(V) is a linear representation of G in V. Define
¢: GxV =V by qg(g,v) = ¢(g)(v). Prove that the correspondence ¢ — )
is a bijection from the set of all linear representations of G and the set of all
linear actions of G on V.

b) Now suppose G is a topological group and equip V' with its Euclidean
topology. Prove that a linear representation ¢ of G in V' is continuous (with
respect to the Euclidean topology in GL(V)) if and only if the corresponding
linear action ¢Z is continuous.

¢) Suppose G is a topological group and V' is a finite-dimensional vector
space with the Euclidean topology. Suppose ®: G xV — V, ®(g,v) = gv is a
linear action of G on V as defined above (not assumed continuous). Deduce
that the following conditions are equivalent:
i) ® is continuous.
ii) For every fixed v € V a mapping ®,: G — V defined by ®,(g) = gv is
continuous.
iii) There exists a basis {v1,...,v,} of V such that ®,, is continuous for all
1=1,...,n

Solution: a) Suppose ¢: G — GL(V) is a homomorphism. Then
Ble,v) = ¢(e)(v) = id(v) =
9(9,9(g',0)) = B(9)(9(g',v) = By(g (1)) = By © by (v) = gy (v) = (g9, V),

since ¢ is homomorphism. Also for every g € G <ZA>9 = ¢(g) is linear.
Hence ¢ is a linear action.

Conversely suppose ®: G x V' — V is a linear action. Then ®, is linear.
Since

CI)g o (I)g—l =id = (I)g—l o (I)g
®, is in fact a linear isomorphism, i.e. an element of GL(V). Hence we may
define &: G — GL(V) by ®(g) = ®,. Using condition (ii) of action it is easy

to see that ® is a homomorphism of groups. Also ¢ — gb and ® — ® are con-
verse operations of each other. Hence they are both bijective correspondences.

Let us next prove c) first. Clearly i)= ii) = iii). Suppose iii) is true. let
{v1,...,v,} be a basis for V such that ®,, is continuous for all i = 1,... n.



Since {vy,...,v,} is a basis every vector v € V' can be written in unique way
as a linear combination of basis vectors,
n
v = Z a;(v)v;,

=1

where a;: V' — R are continuous with respect to the Euclidean topology (
since they correspond to projections for a suitable isomorphism V' — R").
Now

B(g,0) = By(v) = By (Y ai(v)vs) = D ai(0)@y(vi) = Y ai(v)®y,(9),

=1 =1 =1

since @, is linear for all ¢ € G. Since algebraic operations, mappings a; and
®,, are continuous, it follows that ® is continuous.

Now we can finally prove b). Suppose ¢: G — GL(V) is continuous and
choose a basis {vy,...,v,} of V. Then ¢ = p, 0 ¢: G — GL(n;R) is conti-
nuous and the entries ¢;;(g) of the matrix ¢/(g) are exactly the coordinates
of gisvi (g). Since former are continuous, it follows that gisvi is continuous for all
1, which implies the continuity of é by what we already proved.

Also the converse is true - if ® is a linear action, and {vy,...,v,} is some
basis of V', then the coordinates of ®,,(g) are exactly the entries of the matrix
ty 0 ®(g) € GL(n;R). Hence the continuity of ® implies the continuity of .

. Suppose G is a topological group, V' is a finite-dimensional vector space and
¢: G — V is a continuous linear representation. A mapping f: Map(G,R) —
R is called matrix coefficient of the representation ¢ is there exists v € V
and linear L: V — R such that

f(g) = L(¢(g)(v))

for all ¢ € G. The vector subspace of Map(G,R) spanned by all matrix
coefficients of ¢ will be denoted M.

a) Choose a basis in vy, ..., v, in V and represent all linear mapping ¢(g) in
that basis as matrices:

o(g) - d(9)n
R

Prove that every mapping ¢(g);; obtained from the corresponding coefficient
of such matrix is a matrix coefficient of ¢ (which explains terminology).

P(g) =

b) Prove that every matrix representation of ¢ can be written as a linear
combination of matrix coefficients ¢(g);; defined as above. Conclude that M
is finite-dimensional and in fact dim M, < (dim V)%

Solution: a) For every j = 1,...,n define linear mapping L;: V — R as
follows. Suppose v € V. Then there exists unique representation of v as a



linear combination of vectors from the basis vy, ..., v,,
x = ay(z)vy + az(x)vg + ... + an(T)v,.

Assert L;(x) = aj(z). It is easy to verify that L; is linear. Now
9ij(9) = Li(¢(g)v)),

SO ¢;; is a matrix coefficient.

b) Let L; be as above, j = 1,...,n. Then for every linear L: V — R and
v € V we have

L(v) = L(Ly(v)vy+La(v)ve+. . .+ Ly (v)v,) = Ly(v)L(vy)+Lo(v) L(ve)+. . .+ Ly (v)L(vy,) =
= blLl(’U) + bQLQ(U) + ...+ ann(U),

where b; = L(v;) does not depend on v. Hence
L=bL+bLo+...4+b,L,

i.e. every linear L: V' — R can be written as a linear combination of mapping
L;. Hence if f is a matrix coefficient, f(g) = L(¢(g)v) for some L, v, we have

f(g) = (blLl + b2L2 + ...+ ann)(¢(g)(G1U1 + asvg + ...+ CLn’l)n) =
= Z a;biLi(¢(g)vi) = Z aibjij(g),
1<i,j<n 1<i,j<n

where v = a1v; + asvs + ... + a,v,. Hence f belongs to the spanned by ¢;;,
i,j=1,...,n, where n = dim V. In particular dim M, < (dim V')2.

6. Suppose f is a matrix coefficient of a continuous linear representation ¢: G —
V" and suppose g € G. Show that R, f and L, f are also matrix coefficients of
¢. Conclude that the vector subspace of Map(G,R) spanned by the set

{Ryf | g € G}

is finite-dimensional and the same is true for the vector subspace spanned by
the set

{Lsf | g € G}.

Solution: Suppose for all g € G f(g9) = L(¢(g)v) for some fixed linear
L:V —-RandveV.Thenif he H

Rif(g) = fgh) = L(¢(gh)v) = L(¢(g)(¢(h)v)) = L(¢(g)v"),
where v' = ¢(h)(v) € V. Hence Ry, f is a matrix coefficient of ¢.
Likewise
Lnf(g) = f(hg) = L(¢(h)(6(g)v)) = L'(¢(g)v),
where L' = Lo¢(h): V — R is linear. Hence Ly, f is a matrix coefficient of ¢.

Since the subspace spanned by all matrix coefficients of ¢ is finite-dimensional
by the previous exercise, it follows that in particular its subspaces generated
by {R,f | g € G} or {L,f | g € G} are finite-dimensional.
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Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



