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1. Consider the compact group S1 (with the standard multiplication of complex
numbers). Let p : R → S1 be de�ned by

p(t) = e2πit = cos(2π(t)) + i sin(2π(t)).

Prove that the Haar integral for S1 is given by the formula∫
S1

f(x)dx = (R)

∫ 1

0

(f ◦ p)(t)dt

for all continuous f : S1 → R. Here the integral of the right side is the usual
Riemann integral on reals.

Solution: It is enough to check that the mapping I : Map(S1,R) → R
de�ned by

I(f) = (R)

∫ 1

0

(f ◦ p)(t)dt

satis�es all properties of the Haar integral. The linearity of I as well as the
fact that I(f) ≥ 0 if f ≥ 0 are obvious.

I(1) = (R)

∫ 1

0

(1 ◦ p)(t)dt = (R)

∫ 1

0

1dt = 1.

Finally suppose y ∈ S1 is arbitrary. There exists s ∈ [0, 1[ such that p(s) = y.
Now

I(Ry(f)) = (R)

∫ 1

0

f(p(t)y)dt = (R)

∫ 1

0

f(p(t)p(s))dt = (R)

∫ 1

0

f(p(t+ s))dt,

since p is a group homomorphism. By the properties of the Riemann integral

(R)

∫ 1

0

f(p(t+s))dt = (R)

∫ 1+s

s

f(p(t))dt = (R)

∫ 1

s

f(p(t))dt+(R)

∫ 1+s

1

f(p(t))dt.

Since p is periodic with period 1 it follows that

(R)

∫ 1+s

1

f(p(t))dt = (R)

∫ s

0

f(p(t− 1))dt = (R)

∫ s

0

f(p(t))dt,

hence �nally we obtain

I(Ry(f)) = (R)

∫ 1

s

f(p(t))dt+ (R)

∫ s

0

f(p(t))dt = (R)

∫ 1

0

f(p(t))dt = I(f).

Since S1 is abelian (or by exercise 7.4) this is enough.
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2. Let n ∈ N and de�ne f : S1 → S1 by f(z) = zn. Use the previous exercise to
calculate the value of the Haar integral

∫
f (where we think of f as mapping

f : S1 → R2).

Solution: If n = 0 f is a constant function 1, so
∫
f = 1. Otherwise∫

f = (

∫ 1

0

cos2πntdt,

∫ 1

0

sin 2πntdt) = (0, 0) = 0.

3. Suppose V is an n-dimensional vector space, n ∈ N. Let A : V → Rn be a
linear isomorphism. De�ne Euclidean topology on V by requiring that A
is a homeomorphism.
a) Show that this topology is uniquely de�ned and does not depend on the
choice of the isomorphism A.
b) Suppose V,W are �nite-dimensional vector spaces and L : V → W is a
linear mapping. Show that L is continuous with respect to the Euclidean
topologies on V and W .
(Hint: prove b) �rst and apply it to the identity mapping to derive a)).
c) Let GL(V ) be the group of all linear isomorphisms L : V → V (with respect
to the composition of mappings) and let v = {v1, . . . , vn} be an (ordered) basis
of V . Show that the mapping

µv : GL(V ) → GL(n,R)

de�ned by µv(A) = [A]v,v (the matrix of A with respect to the basis v) is
an isomorphism of groups and the topology co-induced by µv in the group
GL(V ) does not depend on the choice of the basis of V . Show that GL(V )
is a topological group with respect to this topology (also referred to as the
Euclidean topology of the group GL(V )).

Solution: Suppose A : V
∼=→ Rn, B : W

∼=→ Rm are linear isomorphisms
and give V topology induced by A and W topology induced by B. Suppose
L : V → W is linear. Then L′ = B ◦ L ◦ A−1 : Rn → Rm is a linear mapping
between spaces Rn, Rm and such a mapping is always continuous with respect
to the standard topologies of Rn,Rm. Since A and B are now homeomorp-
hisms, L is continuous. In particular b) is true.

Now suppose V is given two topologies τ1, τ2 using di�erent isomorphisms
A,A′ : V → Rn. Then id : (V, τ1) → (V, τ2) and id−1 = id: (V, τ2) → (V, τ1)
are linear, so are continuous by what we already proved. Hence τ1 = τ2.

To prove c) �rst notice that the set {L : V → V | L is linear } = W has
the natural structure of �nite-dimensional vector space, dimW = (dimV )2.
The mapping µv can be extended to a linear isomorphism

µv : W → M(n;R)

which is de�ned by the same formula - µv(A) = [A]v,v. Now by the �rst part
of this exercise the topology of W induced by µv does not depend on v, so
the same is true for the relative topology on GL(V ).
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4. Suppose G is a group and V is a �nite-dimensional vector space. No topologies
are considered (yet). A homomorphism of groups ϕ : G → GL(V ) is called a

linear representation of G in V . A mapping Φ: G× V → V,Φ(g, v) = gv
is called linear action of G on V if it satis�es algebraic conditions of the
action i.e.
i)ev = v for all v ∈ V , e neutral element of G,
ii)(gg′)v = g(g′v) for g, g′ ∈ G, v ∈ V
and also
iii)the mapping Φg : V → V de�ned by v 7→ gv is linear for every g ∈ G.

a) Suppose ϕ : G → GL(V ) is a linear representation of G in V . De�ne

ϕ̂ : G × V → V by ϕ̂(g, v) = ϕ(g)(v). Prove that the correspondence ϕ → ϕ̂
is a bijection from the set of all linear representations of G and the set of all
linear actions of G on V .

b) Now suppose G is a topological group and equip V with its Euclidean
topology. Prove that a linear representation ϕ of G in V is continuous (with
respect to the Euclidean topology in GL(V )) if and only if the corresponding

linear action ϕ̂ is continuous.

c) Suppose G is a topological group and V is a �nite-dimensional vector
space with the Euclidean topology. Suppose Φ: G×V → V,Φ(g, v) = gv is a
linear action of G on V as de�ned above (not assumed continuous). Deduce
that the following conditions are equivalent:
i) Φ is continuous.
ii) For every �xed v ∈ V a mapping Φv : G → V de�ned by Φv(g) = gv is
continuous.
iii) There exists a basis {v1, . . . , vn} of V such that Φvi is continuous for all
i = 1, . . . , n.

Solution: a) Suppose ϕ : G → GL(V ) is a homomorphism. Then

ϕ̂(e, v) = ϕ(e)(v) = id(v) = v,

ϕ̂(g, ϕ̂(g′, v)) = ϕ(g)(ϕ̂(g′, v)) = ϕg(ϕg′(v)) = ϕg ◦ ϕg′(v) = ϕgg′(v) = ϕ̂(gg′, v),

since ϕ is homomorphism. Also for every g ∈ G ϕ̂g = ϕ(g) is linear.

Hence ϕ̂ is a linear action.

Conversely suppose Φ: G × V → V is a linear action. Then Φg is linear.
Since

Φg ◦ Φg−1 = id = Φg−1 ◦ Φg

Φg is in fact a linear isomorphism, i.e. an element of GL(V ). Hence we may

de�ne Φ̂ : G → GL(V ) by Φ̂(g) = Φg. Using condition (ii) of action it is easy

to see that Φ̂ is a homomorphism of groups. Also ϕ 7→ ϕ̂ and Φ 7→ Φ̂ are con-
verse operations of each other. Hence they are both bijective correspondences.

Let us next prove c) �rst. Clearly i)⇒ ii) ⇒ iii). Suppose iii) is true. let
{v1, . . . , vn} be a basis for V such that Φvi is continuous for all i = 1, . . . , n.
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Since {v1, . . . , vn} is a basis every vector v ∈ V can be written in unique way
as a linear combination of basis vectors,

v =
n∑

i=1

ai(v)vi,

where ai : V → R are continuous with respect to the Euclidean topology (
since they correspond to projections for a suitable isomorphism V → Rn).
Now

Φ(g, v) = Φg(v) = Φg(
n∑

i=1

ai(v)vi) =
n∑

i=1

ai(v)Φg(vi) =
n∑

i=1

ai(v)Φvi(g),

since Φg is linear for all g ∈ G. Since algebraic operations, mappings ai and
Φvi are continuous, it follows that Φ is continuous.

Now we can �nally prove b). Suppose ϕ : G → GL(V ) is continuous and
choose a basis {v1, . . . , vn} of V . Then ϕ′ = µv ◦ ϕ : G → GL(n;R) is conti-
nuous and the entries ϕij(g) of the matrix ϕ′(g) are exactly the coordinates

of ϕ̂vi(g). Since former are continuous, it follows that ϕ̂vi is continuous for all

i, which implies the continuity of ϕ̂ by what we already proved.

Also the converse is true - if Φ is a linear action, and {v1, . . . , vn} is some
basis of V , then the coordinates of Φvi(g) are exactly the entries of the matrix

µv ◦ Φ̂(g) ∈ GL(n;R). Hence the continuity of Φ implies the continuity of Φ̂.

5. Suppose G is a topological group, V is a �nite-dimensional vector space and
ϕ : G → V is a continuous linear representation. A mapping f : Map(G,R) →
R is called matrix coe�cient of the representation ϕ is there exists v ∈ V
and linear L : V → R such that

f(g) = L(ϕ(g)(v))

for all g ∈ G. The vector subspace of Map(G,R) spanned by all matrix
coe�cients of ϕ will be denoted Mϕ.
a) Choose a basis in v1, . . . , vn in V and represent all linear mapping ϕ(g) in
that basis as matrices:

ϕ(g) =

ϕ(g)11 . . . ϕ(g)1n
. . . . . .

ϕ(g)n1 . . . ϕ(g)nn


Prove that every mapping ϕ(g)ij obtained from the corresponding coe�cient
of such matrix is a matrix coe�cient of ϕ (which explains terminology).

b) Prove that every matrix representation of ϕ can be written as a linear
combination of matrix coe�cients ϕ(g)ij de�ned as above. Conclude that Mϕ

is �nite-dimensional and in fact dimMϕ ≤ (dimV )2.

Solution: a) For every j = 1, . . . , n de�ne linear mapping Lj : V → R as
follows. Suppose v ∈ V . Then there exists unique representation of v as a
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linear combination of vectors from the basis v1, . . . , vn,

x = a1(x)v1 + a2(x)v2 + . . .+ an(x)vn.

Assert Lj(x) = aj(x). It is easy to verify that Lj is linear. Now

ϕij(g) = Li(ϕ(g)vj),

so ϕij is a matrix coe�cient.

b) Let Lj be as above, j = 1, . . . , n. Then for every linear L : V → R and
v ∈ V we have

L(v) = L(L1(v)v1+L2(v)v2+. . .+Ln(v)vn) = L1(v)L(v1)+L2(v)L(v2)+. . .+Ln(v)L(vn) =

= b1L1(v) + b2L2(v) + . . .+ bnLn(v),

where bi = L(vi) does not depend on v. Hence

L = b1L1 + b2L2 + . . .+ bnLn

i.e. every linear L : V → R can be written as a linear combination of mapping
Lj. Hence if f is a matrix coe�cient, f(g) = L(ϕ(g)v) for some L, v, we have

f(g) = (b1L1 + b2L2 + . . .+ bnLn)(ϕ(g)(a1v1 + a2v2 + . . .+ anvn) =

=
∑

1≤i,j≤n

aibjLj(ϕ(g)vi) =
∑

1≤i,j≤n

aibjϕij(g),

where v = a1v1 + a2v2 + . . . + anvn. Hence f belongs to the spanned by ϕij,
i, j = 1, . . . , n, where n = dimV . In particular dimMϕ ≤ (dimV )2.

6. Suppose f is a matrix coe�cient of a continuous linear representation ϕ : G →
V and suppose g ∈ G. Show that Rgf and Lgf are also matrix coe�cients of
ϕ. Conclude that the vector subspace of Map(G,R) spanned by the set

{Rgf | g ∈ G}

is �nite-dimensional and the same is true for the vector subspace spanned by
the set

{Lgf | g ∈ G}.

Solution: Suppose for all g ∈ G f(g) = L(ϕ(g)v) for some �xed linear
L : V → R and v ∈ V . Then if h ∈ H

Rhf(g) = f(gh) = L(ϕ(gh)v) = L(ϕ(g)(ϕ(h)v)) = L(ϕ(g)v′),

where v′ = ϕ(h)(v) ∈ V . Hence Rhf is a matrix coe�cient of ϕ.
Likewise

Lhf(g) = f(hg) = L(ϕ(h)(ϕ(g)v)) = L′(ϕ(g)v),

where L′ = L ◦ϕ(h) : V → R is linear. Hence Lhf is a matrix coe�cient of ϕ.

Since the subspace spanned by all matrix coe�cients of ϕ is �nite-dimensional
by the previous exercise, it follows that in particular its subspaces generated
by {Rgf | g ∈ G} or {Lgf | g ∈ G} are �nite-dimensional.
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Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


