Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 8
Solutions

1. Consider the compact group S^{1} (with the standard multiplication of complex numbers). Let $p: \mathbb{R} \rightarrow S^{1}$ be defined by

$$
p(t)=e^{2 \pi i t}=\cos (2 \pi(t))+i \sin (2 \pi(t)) .
$$

Prove that the Haar integral for S^{1} is given by the formula

$$
\int_{S^{1}} f(x) d x=(R) \int_{0}^{1}(f \circ p)(t) d t
$$

for all continuous $f: S^{1} \rightarrow \mathbb{R}$. Here the integral of the right side is the usual Riemann integral on reals.

Solution: It is enough to check that the mapping $I: \operatorname{Map}\left(S^{1}, \mathbb{R}\right) \rightarrow \mathbb{R}$ defined by

$$
I(f)=(R) \int_{0}^{1}(f \circ p)(t) d t
$$

satisfies all properties of the Haar integral. The linearity of I as well as the fact that $I(f) \geq 0$ if $f \geq 0$ are obvious.

$$
I(1)=(R) \int_{0}^{1}(1 \circ p)(t) d t=(R) \int_{0}^{1} 1 d t=1
$$

Finally suppose $y \in S^{1}$ is arbitrary. There exists $s \in[0,1[$ such that $p(s)=y$. Now

$$
I\left(R_{y}(f)\right)=(R) \int_{0}^{1} f(p(t) y) d t=(R) \int_{0}^{1} f(p(t) p(s)) d t=(R) \int_{0}^{1} f(p(t+s)) d t
$$

since p is a group homomorphism. By the properties of the Riemann integral
$(R) \int_{0}^{1} f(p(t+s)) d t=(R) \int_{s}^{1+s} f(p(t)) d t=(R) \int_{s}^{1} f(p(t)) d t+(R) \int_{1}^{1+s} f(p(t)) d t$.
Since p is periodic with period 1 it follows that

$$
(R) \int_{1}^{1+s} f(p(t)) d t=(R) \int_{0}^{s} f(p(t-1)) d t=(R) \int_{0}^{s} f(p(t)) d t
$$

hence finally we obtain
$I\left(R_{y}(f)\right)=(R) \int_{s}^{1} f(p(t)) d t+(R) \int_{0}^{s} f(p(t)) d t=(R) \int_{0}^{1} f(p(t)) d t=I(f)$.
Since S^{1} is abelian (or by exercise 7.4) this is enough.
2. Let $n \in \mathbb{N}$ and define $f: S^{1} \rightarrow S^{1}$ by $f(z)=z^{n}$. Use the previous exercise to calculate the value of the Haar integral $\int f$ (where we think of f as mapping $f: S^{1} \rightarrow \mathbb{R}^{2}$).

Solution: If $n=0 f$ is a constant function 1 , so $\int f=1$. Otherwise

$$
\int f=\left(\int_{0}^{1} \cos 2 \pi n t d t, \int_{0}^{1} \sin 2 \pi n t d t\right)=(0,0)=0 .
$$

3. Suppose V is an n-dimensional vector space, $n \in \mathbb{N}$. Let $A: V \rightarrow \mathbb{R}^{n}$ be a linear isomorphism. Define Euclidean topology on V by requiring that A is a homeomorphism.
a) Show that this topology is uniquely defined and does not depend on the choice of the isomorphism A.
b) Suppose V, W are finite-dimensional vector spaces and $L: V \rightarrow W$ is a linear mapping. Show that L is continuous with respect to the Euclidean topologies on V and W.
(Hint: prove b) first and apply it to the identity mapping to derive a)).
c) Let $G L(V)$ be the group of all linear isomorphisms $L: V \rightarrow V$ (with respect to the composition of mappings) and let $v=\left\{v_{1}, \ldots, v_{n}\right\}$ be an (ordered) basis of V. Show that the mapping

$$
\mu_{v}: G L(V) \rightarrow G L(n, \mathbb{R})
$$

defined by $\mu_{v}(A)=[A]_{v, v}$ (the matrix of A with respect to the basis v) is an isomorphism of groups and the topology co-induced by μ_{v} in the group $G L(V)$ does not depend on the choice of the basis of V. Show that $G L(V)$ is a topological group with respect to this topology (also referred to as the Euclidean topology of the group $G L(V)$).

Solution: Suppose $A: V \stackrel{\cong}{\rightrightarrows} \mathbb{R}^{n}, B: W \xrightarrow{\cong} \mathbb{R}^{m}$ are linear isomorphisms and give V topology induced by A and W topology induced by B. Suppose $L: V \rightarrow W$ is linear. Then $L^{\prime}=B \circ L \circ A^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear mapping between spaces $\mathbb{R}^{n}, \mathbb{R}^{m}$ and such a mapping is always continuous with respect to the standard topologies of $\mathbb{R}^{n}, \mathbb{R}^{m}$. Since A and B are now homeomorphisms, L is continuous. In particular b) is true.

Now suppose V is given two topologies τ_{1}, τ_{2} using different isomorphisms $A, A^{\prime}: V \rightarrow \mathbb{R}^{n}$. Then id: $\left(V, \tau_{1}\right) \rightarrow\left(V, \tau_{2}\right)$ and $\mathrm{id}^{-1}=\mathrm{id}:\left(V, \tau_{2}\right) \rightarrow\left(V, \tau_{1}\right)$ are linear, so are continuous by what we already proved. Hence $\tau_{1}=\tau_{2}$.

To prove c) first notice that the set $\{L: V \rightarrow V \mid L$ is linear $\}=W$ has the natural structure of finite-dimensional vector space, $\operatorname{dim} W=(\operatorname{dim} V)^{2}$. The mapping μ_{v} can be extended to a linear isomorphism

$$
\mu_{v}: W \rightarrow M(n ; \mathbb{R})
$$

which is defined by the same formula $-\mu_{v}(A)=[A]_{v, v}$. Now by the first part of this exercise the topology of W induced by μ_{v} does not depend on v, so the same is true for the relative topology on $G L(V)$.
4. Suppose G is a group and V is a finite-dimensional vector space. No topologies are considered (yet). A homomorphism of groups $\phi: G \rightarrow G L(V)$ is called a linear representation of G in V. A mapping $\Phi: G \times V \rightarrow V, \Phi(g, v)=g v$ is called linear action of G on V if it satisfies algebraic conditions of the action i.e.
i) $e v=v$ for all $v \in V, e$ neutral element of G,
ii) $\left(g g^{\prime}\right) v=g\left(g^{\prime} v\right)$ for $g, g^{\prime} \in G, v \in V$
and also
iii)the mapping $\Phi_{g}: V \rightarrow V$ defined by $v \mapsto g v$ is linear for every $g \in G$.
a) Suppose $\phi: G \rightarrow G L(V)$ is a linear representation of G in V. Define $\hat{\phi}: G \times V \rightarrow V$ by $\hat{\phi}(g, v)=\phi(g)(v)$. Prove that the correspondence $\phi \rightarrow \hat{\phi}$ is a bijection from the set of all linear representations of G and the set of all linear actions of G on V.
b) Now suppose G is a topological group and equip V with its Euclidean topology. Prove that a linear representation ϕ of G in V is continuous (with respect to the Euclidean topology in $G L(V)$) if and only if the corresponding linear action $\hat{\phi}$ is continuous.
c) Suppose G is a topological group and V is a finite-dimensional vector space with the Euclidean topology. Suppose $\Phi: G \times V \rightarrow V, \Phi(g, v)=g v$ is a linear action of G on V as defined above (not assumed continuous). Deduce that the following conditions are equivalent:
i) Φ is continuous.
ii) For every fixed $v \in V$ a mapping $\Phi_{v}: G \rightarrow V$ defined by $\Phi_{v}(g)=g v$ is continuous.
iii) There exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that $\Phi_{v_{i}}$ is continuous for all $i=1, \ldots, n$.

Solution: a) Suppose $\phi: G \rightarrow G L(V)$ is a homomorphism. Then

$$
\hat{\phi}(e, v)=\phi(e)(v)=\operatorname{id}(v)=v
$$

$\hat{\phi}\left(g, \hat{\phi}\left(g^{\prime}, v\right)\right)=\phi(g)\left(\hat{\phi}\left(g^{\prime}, v\right)\right)=\phi_{g}\left(\phi_{g^{\prime}}(v)\right)=\phi_{g} \circ \phi_{g^{\prime}}(v)=\phi_{g g^{\prime}}(v)=\hat{\phi}\left(g g^{\prime}, v\right)$,
since ϕ is homomorphism. Also for every $g \in G \hat{\phi}_{g}=\phi(g)$ is linear.
Hence $\hat{\phi}$ is a linear action.
Conversely suppose $\Phi: G \times V \rightarrow V$ is a linear action. Then Φ_{g} is linear. Since

$$
\Phi_{g} \circ \Phi_{g^{-1}}=\mathrm{id}=\Phi_{g^{-1}} \circ \Phi_{g}
$$

Φ_{g} is in fact a linear isomorphism, i.e. an element of $G L(V)$. Hence we may define $\hat{\Phi}: G \rightarrow G L(V)$ by $\hat{\Phi}(g)=\Phi_{g}$. Using condition (ii) of action it is easy to see that $\hat{\Phi}$ is a homomorphism of groups. Also $\phi \mapsto \hat{\phi}$ and $\Phi \mapsto \hat{\Phi}$ are converse operations of each other. Hence they are both bijective correspondences.

Let us next prove c) first. Clearly i) \Rightarrow ii) \Rightarrow iii). Suppose iii) is true. let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V such that $\Phi_{v_{i}}$ is continuous for all $i=1, \ldots, n$.

Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis every vector $v \in V$ can be written in unique way as a linear combination of basis vectors,

$$
v=\sum_{i=1}^{n} a_{i}(v) v_{i}
$$

where $a_{i}: V \rightarrow \mathbb{R}$ are continuous with respect to the Euclidean topology (since they correspond to projections for a suitable isomorphism $V \rightarrow \mathbb{R}^{n}$). Now

$$
\Phi(g, v)=\Phi_{g}(v)=\Phi_{g}\left(\sum_{i=1}^{n} a_{i}(v) v_{i}\right)=\sum_{i=1}^{n} a_{i}(v) \Phi_{g}\left(v_{i}\right)=\sum_{i=1}^{n} a_{i}(v) \Phi_{v_{i}}(g)
$$

since Φ_{g} is linear for all $g \in G$. Since algebraic operations, mappings a_{i} and $\Phi_{v_{i}}$ are continuous, it follows that Φ is continuous.

Now we can finally prove b). Suppose $\phi: G \rightarrow G L(V)$ is continuous and choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V. Then $\phi^{\prime}=\mu_{v} \circ \phi: G \rightarrow G L(n ; \mathbb{R})$ is continuous and the entries $\phi_{i j}(g)$ of the matrix $\phi^{\prime}(g)$ are exactly the coordinates of $\hat{\phi}_{v_{i}}(g)$. Since former are continuous, it follows that $\hat{\phi}_{v_{i}}$ is continuous for all i, which implies the continuity of $\hat{\phi}$ by what we already proved.

Also the converse is true - if Φ is a linear action, and $\left\{v_{1}, \ldots, v_{n}\right\}$ is some basis of V, then the coordinates of $\Phi_{v_{i}}(g)$ are exactly the entries of the matrix $\mu_{v} \circ \hat{\Phi}(g) \in G L(n ; \mathbb{R})$. Hence the continuity of Φ implies the continuity of $\hat{\Phi}$.
5. Suppose G is a topological group, V is a finite-dimensional vector space and $\phi: G \rightarrow V$ is a continuous linear representation. A mapping $f: \operatorname{Map}(G, \mathbb{R}) \rightarrow$ \mathbb{R} is called matrix coefficient of the representation ϕ is there exists $v \in V$ and linear $L: V \rightarrow \mathbb{R}$ such that

$$
f(g)=L(\phi(g)(v))
$$

for all $g \in G$. The vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by all matrix coefficients of ϕ will be denoted \mathcal{M}_{ϕ}.
a) Choose a basis in v_{1}, \ldots, v_{n} in V and represent all linear mapping $\phi(g)$ in that basis as matrices:

$$
\phi(g)=\left[\begin{array}{cc}
\phi(g)_{11} & \ldots \phi(g)_{1 n} \\
\ldots & \ldots \\
\phi(g)_{n 1} & \ldots \phi(g)_{n n}
\end{array}\right]
$$

Prove that every mapping $\phi(g)_{i j}$ obtained from the corresponding coefficient of such matrix is a matrix coefficient of ϕ (which explains terminology).
b) Prove that every matrix representation of ϕ can be written as a linear combination of matrix coefficients $\phi(g)_{i j}$ defined as above. Conclude that \mathcal{M}_{ϕ} is finite-dimensional and in fact $\operatorname{dim} \mathcal{M}_{\phi} \leq(\operatorname{dim} V)^{2}$.

Solution: a) For every $j=1, \ldots, n$ define linear mapping $L_{j}: V \rightarrow \mathbb{R}$ as follows. Suppose $v \in V$. Then there exists unique representation of v as a
linear combination of vectors from the basis v_{1}, \ldots, v_{n},

$$
x=a_{1}(x) v_{1}+a_{2}(x) v_{2}+\ldots+a_{n}(x) v_{n} .
$$

Assert $L_{j}(x)=a_{j}(x)$. It is easy to verify that L_{j} is linear. Now

$$
\phi_{i j}(g)=L_{i}\left(\phi(g) v_{j}\right),
$$

so $\phi_{i j}$ is a matrix coefficient.
b) Let L_{j} be as above, $j=1, \ldots, n$. Then for every linear $L: V \rightarrow \mathbb{R}$ and $v \in V$ we have

$$
\begin{gathered}
L(v)=L\left(L_{1}(v) v_{1}+L_{2}(v) v_{2}+\ldots+L_{n}(v) v_{n}\right)=L_{1}(v) L\left(v_{1}\right)+L_{2}(v) L\left(v_{2}\right)+\ldots+L_{n}(v) L\left(v_{n}\right)= \\
=b_{1} L_{1}(v)+b_{2} L_{2}(v)+\ldots+b_{n} L_{n}(v)
\end{gathered}
$$

where $b_{i}=L\left(v_{i}\right)$ does not depend on v. Hence

$$
L=b_{1} L_{1}+b_{2} L_{2}+\ldots+b_{n} L_{n}
$$

i.e. every linear $L: V \rightarrow \mathbb{R}$ can be written as a linear combination of mapping L_{j}. Hence if f is a matrix coefficient, $f(g)=L(\phi(g) v)$ for some L, v, we have

$$
\begin{gathered}
f(g)=\left(b_{1} L_{1}+b_{2} L_{2}+\ldots+b_{n} L_{n}\right)\left(\phi(g)\left(a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}\right)=\right. \\
=\sum_{1 \leq i, j \leq n} a_{i} b_{j} L_{j}\left(\phi(g) v_{i}\right)=\sum_{1 \leq i, j \leq n} a_{i} b_{j} \phi_{i j}(g),
\end{gathered}
$$

where $v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$. Hence f belongs to the spanned by $\phi_{i j}$, $i, j=1, \ldots, n$, where $n=\operatorname{dim} V$. In particular $\operatorname{dim} \mathcal{M}_{\phi} \leq(\operatorname{dim} V)^{2}$.
6. Suppose f is a matrix coefficient of a continuous linear representation $\phi: G \rightarrow$ V and suppose $g \in G$. Show that $R_{g} f$ and $L_{g} f$ are also matrix coefficients of ϕ. Conclude that the vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by the set

$$
\left\{R_{g} f \mid g \in G\right\}
$$

is finite-dimensional and the same is true for the vector subspace spanned by the set

$$
\left\{L_{g} f \mid g \in G\right\}
$$

Solution: Suppose for all $g \in G f(g)=L(\phi(g) v)$ for some fixed linear $L: V \rightarrow \mathbb{R}$ and $v \in V$. Then if $h \in H$

$$
R_{h} f(g)=f(g h)=L(\phi(g h) v)=L(\phi(g)(\phi(h) v))=L\left(\phi(g) v^{\prime}\right),
$$

where $v^{\prime}=\phi(h)(v) \in V$. Hence $R_{h} f$ is a matrix coefficient of ϕ.
Likewise

$$
L_{h} f(g)=f(h g)=L(\phi(h)(\phi(g) v))=L^{\prime}(\phi(g) v),
$$

where $L^{\prime}=L \circ \phi(h): V \rightarrow \mathbb{R}$ is linear. Hence $L_{h} f$ is a matrix coefficient of ϕ.
Since the subspace spanned by all matrix coefficients of ϕ is finite-dimensional by the previous exercise, it follows that in particular its subspaces generated by $\left\{R_{g} f \mid g \in G\right\}$ or $\left\{L_{g} f \mid g \in G\right\}$ are finite-dimensional.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

