Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 8
19-23.03.2012

1. Consider the compact group S^{1} (with the standard multiplication of complex numbers). Let $p: \mathbb{R} \rightarrow S^{1}$ be defined by

$$
p(t)=e^{2 \pi i t}=\cos (2 \pi(t))+i \sin (2 \pi(t)) .
$$

Prove that the Haar integral for S^{1} is given by the formula

$$
\int_{S^{1}} f(x) d x=(R) \int_{0}^{1}(f \circ p)(t) d t
$$

for all continuous $f: S^{1} \rightarrow \mathbb{R}$. Here the integral of the right side is the usual Riemann integral on reals.
2. Let $n \in \mathbb{N}$ and define $f: S^{1} \rightarrow S^{1}$ by $f(z)=z^{n}$. Use the previous exercise to calculate the value of the Haar integral $\int f$ (where we think of f as mapping $f: S^{1} \rightarrow \mathbb{R}^{2}$).
3. Suppose V is an n-dimensional vector space, $n \in \mathbb{N}$. Let $A: V \rightarrow \mathbb{R}^{n}$ be a linear isomorphism. Define Euclidean topology on V by requiring that A is a homeomorphism.
a) Show that this topology is uniquely defined and does not depend on the choice of the isomorphism A.
b) Suppose V, W are finite-dimensional vector spaces and $L: V \rightarrow W$ is a linear mapping. Show that L is continuous with respect to the Euclidean topologies on V and W.
(Hint: prove b) first and apply it to the identity mapping to derive a)).
c) Let $G L(V)$ be the group of all linear isomorphisms $L: V \rightarrow V$ (with respect to the composition of mappings) and let $v=\left\{v_{1}, \ldots, v_{n}\right\}$ be an (ordered) basis of V. Show that the mapping

$$
\mu_{v}: G L(V) \rightarrow G L(n, \mathbb{R})
$$

defined by $\mu_{v}(A)=[A]_{v, v}$ (the matrix of A with respect to the basis v) is an isomorphism of groups and the topology co-induced by μ_{v} in the group $G L(V)$ does not depend on the choice of the basis of V. Show that $G L(V)$ is a topological group with respect to this topology (also referred to as the Euclidean topology of the group $G L(V)$).
4. Suppose G is a group and V is a finite-dimensional vector space. No topologies are considered (yet). A homomorphism of groups $\phi: G \rightarrow G L(V)$ is called a linear representation of G in V. A mapping $\Phi: G \times V \rightarrow V, \Phi(g, v)=g v$ is called linear action of G on V if it satisfies algebraic conditions of the action i.e.
i) $e v=v$ for all $v \in V$, e neutral element of G, ii) $\left(g g^{\prime}\right) v=g\left(g^{\prime} v\right)$ for $g, g^{\prime} \in G, v \in V$
and also
iii)the mapping $\Phi_{g}: V \rightarrow V$ defined by $v \mapsto g v$ is linear for every $g \in G$.
a) Suppose $\phi: G \rightarrow G L(V)$ is a linear representation of G in V. Define $\hat{\phi}: G \times V \rightarrow V$ by $\hat{\phi}(g, v)=\phi(g)(v)$. Prove that the correspondence $\phi \rightarrow \hat{\phi}$ is a bijection from the set of all linear representations of G and the set of all linear actions of G on V.
b) Now suppose G is a topological group and equip V with its Euclidean topology. Prove that a linear representation ϕ of G in V is continuous (with respect to the Euclidean topology in $G L(V)$) if and only if the corresponding linear action $\hat{\phi}$ is continuous.
c) Suppose G is a topological group and V is a finite-dimensional vector space with the Euclidean topology. Suppose $\Phi: G \times V \rightarrow V, \Phi(g, v)=g v$ is a linear action of G on V as defined above (not assumed continuous). Deduce that the following conditions are equivalent:
i) Φ is continuous.
ii) For every fixed $v \in V$ a mapping $\Phi_{v}: G \rightarrow V$ defined by $\Phi_{v}(g)=g v$ is continuous.
iii) There exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that $\Phi_{v_{i}}$ is continuous for all $i=1, \ldots, n$.
5. Suppose G is a topological group, V is a finite-dimensional vector space and $\phi: G \rightarrow V$ is a continuous linear representation. A mapping $f: \operatorname{Map}(G, \mathbb{R}) \rightarrow$ \mathbb{R} is called matrix coefficient of the representation ϕ is there exists $v \in V$ and linear $L: V \rightarrow \mathbb{R}$ such that

$$
f(g)=L(\phi(g)(v))
$$

for all $g \in G$. The vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by all matrix coefficients of ϕ will be denoted \mathcal{M}_{ϕ}.
a) Choose a basis in v_{1}, \ldots, v_{n} in V and represent all linear mapping $\phi(g)$ in that basis as matrices:

$$
\phi(g)=\left[\begin{array}{cc}
\phi(g)_{11} & \ldots \phi(g)_{1 n} \\
\ldots & \ldots \\
\phi(g)_{n 1} & \ldots \phi(g)_{n n}
\end{array}\right]
$$

Prove that every mapping $\phi(g)_{i j}$ obtained from the corresponding coefficient of such matrix is a matrix coefficient of ϕ (which explains terminology).
b) Prove that every matrix representation of ϕ can be written as a linear combination of matrix coefficients $\phi(g)_{i j}$ defined as above. Conclude that \mathcal{M}_{ϕ} is finite-dimensional and in fact $\operatorname{dim} \mathcal{M}_{\phi} \leq(\operatorname{dim} V)^{2}$.
6. Suppose f is a matrix coefficient of a continuous linear representation $\phi: G \rightarrow$ V and suppose $g \in G$. Show that $R_{g} f$ and $L_{g} f$ are also matrix coefficients of
ϕ. Conclude that the vector subspace of $\operatorname{Map}(G, \mathbb{R})$ spanned by the set

$$
\left\{R_{g} f \mid g \in G\right\}
$$

is finite-dimensional and the same is true for the vector subspace spanned by the set

$$
\left\{L_{g} f \mid g \in G\right\}
$$

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

