Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 5
Solutions

1. Prove the following claim using nets.

Suppose C, X are topological spaces and C is compact. Then projection $p r_{2}: C \times X \rightarrow X$ is a closed mapping.

Solution: Suppose $F \subset C \times X$ is closed. We need to prove that $p r_{2}(F)$ is closed in X. it is enough to prove that if a net $\left(x_{n}\right)_{n \in N}$ in $p r_{2}(F)$ converges to $x \in X$, then $x \in p r_{2}(F)$. Suppose $\left(x_{n}\right)_{n \in N}$ is such a net. For every $n \in N$ we can find $a_{n} \in C$ and $b_{n} \in X$ such that $\left(a_{n}, b_{n}\right) \in F$ and $p r_{2}\left(a_{n}, b_{n}\right)=x_{n}$. Last condition means that simply $b_{n}=x_{n}$. In particular we obtain a net a_{n} in C. Since C is compact, by going to a subnet if necessary we may assumer that a_{n} converges to $a \in C$. Now $\left(a_{n}, b_{n}\right)$ is a net in F, which converges to (a, x), so $(a, x) \in F$, since F is closed. It follows that $x=p r_{2}(a, x) \in p r_{2}(F)$.
2. Prove that the mapping $\Phi: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \Phi(t,(x, y))=(x+t, y)$ is action of the group $(\mathbb{R},+)=G$ on the plane $\mathbb{R}^{2}=X$. Prove that the orbit space of this action is homeomorphic to \mathbb{R} and the canonical projection $X \mapsto X / G$ is not a closed mapping.

Solution: Let us first check that Φ is action. Continuity of Φ is obvious. Also

$$
\begin{gathered}
\Phi(0,(x, y))=(x, y) \\
\Phi\left(t, \Phi\left(t^{\prime},(x, y)\right)\right)=\Phi\left(t,\left(x+t^{\prime}, y\right)\right)=\left(x+\left(t+t^{\prime}\right), y\right)
\end{gathered}
$$

If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in the same orbit, it implies that $y=y^{\prime}$. Conversely (x, y) and $\left(x^{\prime}, y\right)$ are on the same orbit for every $x, x^{\prime} \in \mathbb{R}$, since $t(x, y)=\left(x^{\prime}, y\right)$ for $t=x^{\prime}-x$.

Let $p r_{2}: \mathbb{R}^{2} \rightarrow R, p r_{2}(x, y)=y$. Then $p r_{2}$ is continuous and open (Topology II) surjection, hence quotient mapping. Also $p r_{2}(x, y)=p r_{2}\left(x^{\prime}, y^{\prime}\right)$ if and only if $y=y^{\prime}$ if and only if points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in the same orbit. Hence $p r_{2}$ induces homeomorphism between X / G and \mathbb{R}.

Previous paragraph implies that up to a homeomorphism the canonical projection $X \mapsto X / G$ is just a projection $p r_{2}: \mathbb{R}^{2} \rightarrow R$, which is known to be not closed mapping. For example if one takes

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=1\right\}
$$

then A is closed, but $p r_{2}(A)=\mathbb{R} \backslash\{0\}$ is not closed.
3. Suppose G is a topological group and H is a closed subgroup of G. Use nets to prove that the normalizer of H defined by

$$
N(H)=\left\{g \in G \mid g H g^{-1}=H\right\}
$$

is closed in G.
Also prove the following facts:

1) $N(H)$ is a subgroup of G and H is a normal subgroup of $N(H)$.
2) $N(H)$ is the biggest subgroup of G which contains H as a normal subgroup i.e. if $H \leq K \leq G$ and H is normal in K, then $K \subset N(H)$.

Solution: Suppose $g \in \overline{N(H)}$ and let $\left(g_{\alpha}\right)$ be a net in $N(H)$ that converges to g. Then for every $h \in H$ the net $g_{\alpha} h\left(g_{\alpha}\right)^{-1}$ converges to $g h g^{-1}$ and stays in H. Since H is closed, the limit $g h g^{-1} \in H$ as well. Hence $g H g^{-1} \subset H$. Similarly using the fact that $\left(g_{\alpha}\right)^{-1} h\left(g_{\alpha}\right)$ converges to $g^{-1} h g$ we see that $g H g^{-1} \subset H$. Hence $g \in N(H)$.

Suppose $g, g^{\prime} \in N(H)$, then

$$
\left(g g^{\prime}\right) N(H)\left(g g^{\prime}\right)^{-1}=g\left(g^{\prime} H g^{\prime}-1\right) g^{-1}=g H g^{-1}=H,
$$

hence $N(H)$ is closed under multiplication. Moreover multiplying $g \mathrm{Hg}^{-1}=H$ by g^{-1} on the left and g on the right we obtain $H=g^{-1} H g$, so if $g \in N(H)$ also $g^{-1} \in N(H)$. If $g \in H$, then $g H g^{-1}=H$, since H is a subgroup, so $H \subset N(H)$, in particular $N(H)$ is non-empty. Thus $N(H)$ is a subgroup.

Suppose $K \subset G$ a subgroup such that $H \subset K$. Then H is normal in K if and only if $g H^{-1}=H$ for all $k \in K$, hence if and only if $K \subset N(H)$. In particular we see that H is closed in $N(H)$.
4. Suppose X is a Hausdorff G-space. Let $J \subset G$ be arbitrary. Prove that

$$
X^{J}=X^{\bar{H}}
$$

where H is a subgroup of G generated by J.
This result implies that it is enough to consider fixed point sets of closed subgroups.

Solution: Suppose $x \in=X^{\bar{H}}$. Since $J \subset \bar{H}$, this implies in particular that $j x=x$ for all $j \in J$, so $x \in X^{J}$.
It remains to prove the converse inclusion

$$
X^{J} \subset X^{\bar{H}}
$$

Let

$$
K=\left\{k \in J \mid k x=x \text { for all } x \in X^{J}\right\} .
$$

Then K is a subgroup:

1) $e x=x$ for neutral element $e \in G$ and $x \in X^{J}$,
2) if $k x=x$ and $k^{\prime} x=x$ for all $x \in X^{J}$, then

$$
\left(k k^{\prime}\right) x=k\left(k^{\prime} x\right)=k x=x,
$$

3) if $k x=x$, then

$$
x=k^{-1}(k x)=k^{-1} x .
$$

Also K is closed since it is intersection of isotropy groups G_{x} where $x \in X^{J}$, which are closed by Lemma 1.3. Since $j x=x$ for all $x \in X^{J}$ by definition, we see that $J \subset K$. Since H is the smallest subgroup of G that contains J, we must have $H \subset K$. Since K is closed this in turn implies that $\bar{H} \subset K$. In other words if $x \in X^{J}$, then $h x=x$ for all $h \in \bar{H}$, which implies that $x \in X^{\bar{H}}$. Hence $X^{J} \subset X^{\bar{H}}$.

Remark: Since Lemma 1.3 is true also for T_{1} spaces, it is enough to assume X is T_{1}. Moreover $X^{J}=X^{H}$ is true for any G-space X.
5. Suppose G is a topological group, $A \subset G$ is compact and $B \subset G$ is closed. Use nets to prove that the set

$$
A B=\{a b \mid a \in A, b \in B\}
$$

is closed in G.

Solution: Suppose $\left(a_{n} b_{n}\right)$ is a net in $A B$ that converges towards $g \in G$. Since A is compact, we may assume that the net $\left(a_{n}\right)$ converges to some $a \in A$. Continuity of algebraic operations then imply that $b_{n}=\left(a_{n}^{-1}\left(a_{n} b_{n}\right)\right.$ converges to $a^{-1} g$. Since B is closed this implies that $b=a^{-1} g \in B$. Hence $g=a b \in A B$.
6. a) Consider the standard linear action of $G L(n ; \mathbb{R})$ on \mathbb{R}^{n}. Prove that for every subset $J \subset G L(n ; \mathbb{R})$ the fixed point set $\left(\mathbb{R}^{n}\right)^{J}$ is a vector subspace of \mathbb{R}^{n}.
b) Consider the standard action of the orthogonal linear group $O(n)$ on S^{n-1}. Prove that for every subset $J \subset O(n)$ the fixed point set $\left(S^{n-1}\right)^{J}$ is homeomorphic to S^{r} for some $r=-1, \ldots, n-1$. Here $S^{-1}=\emptyset$.

Solution: a)Suppose $x, y \in\left(\mathbb{R}^{n}\right)^{J}, \lambda \in \mathbb{R}$. Let $A \in J$. Then

$$
\begin{gathered}
A(x+y)=A x+A y=x+y, \\
A(\lambda x)=\lambda A(x)=\lambda x .
\end{gathered}
$$

Since $A 0=0,0 \in\left(\mathbb{R}^{n}\right)^{J}$. We have proved that $\left(\mathbb{R}^{n}\right)^{J}$ is a vector subspaces of \mathbb{R}^{n}.
b) By a) it is enough to prove that for every vector subspace $V: \mathbb{R}^{n}$ the set $V \cap S^{n-1}$ is homeomorphic to S^{r} for some $r=-1, \ldots, n-1$. Choose an orthonormal basis v_{1}, \ldots, v_{r} for V and complete it to the orthonormal basis $v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$ of \mathbb{R}^{n}. Let o be a matrix whose columns are $v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$ in that order. Then $O \in O(n)$ and $O\left(e_{i}\right)=v_{i}$ for $i=$ $1, \ldots, r$. Here e_{1}, \ldots, e_{n} is the standard basis of $\mathbb{R}^{n}, e_{i}=(0, l$ dots $, 0,1,0, \ldots, 0)$. Since O preserves norms, O maps $S^{r}=\left\{\left(x_{1}, \ldots, x_{r}, 0,0, \ldots, 0\right) \in S^{n-1}\right\}$ precisely onto $V \cap S^{n-1}$. Since O is a homeomorphism (as a linear isomorphism), we obtain the claim.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

