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1. Prove the following claim using nets.
Suppose C,X are topological spaces and C is compact. Then projection
pr2 : C ×X → X is a closed mapping.

Solution: Suppose F ⊂ C × X is closed. We need to prove that pr2(F ) is
closed in X. it is enough to prove that if a net (xn)n∈N in pr2(F ) converges
to x ∈ X, then x ∈ pr2(F ). Suppose (xn)n∈N is such a net. For every n ∈ N
we can �nd an ∈ C and bn ∈ X such that (an, bn) ∈ F and pr2(an, bn) = xn.
Last condition means that simply bn = xn. In particular we obtain a net an
in C. Since C is compact, by going to a subnet if necessary we may assumer
that an converges to a ∈ C. Now (an, bn) is a net in F , which converges to
(a, x), so (a, x) ∈ F , since F is closed. It follows that x = pr2(a, x) ∈ pr2(F ).

2. Prove that the mapping Φ: R × R2 → R2, Φ(t, (x, y)) = (x + t, y) is action
of the group (R,+) = G on the plane R2 = X. Prove that the orbit space of
this action is homeomorphic to R and the canonical projection X 7→ X/G is
not a closed mapping.

Solution: Let us �rst check that Φ is action. Continuity of Φ is obvious. Also

Φ(0, (x, y)) = (x, y),

Φ(t,Φ(t′, (x, y))) = Φ(t, (x+ t′, y)) = (x+ (t+ t′), y).

If (x, y) and (x′, y′) are in the same orbit, it implies that y = y′. Con-
versely (x, y) and (x′, y) are on the same orbit for every x, x′ ∈ R, since
t(x, y) = (x′, y) for t = x′ − x.

Let pr2 : R2 → R, pr2(x, y) = y. Then pr2 is continuous and open (Topolo-
gy II) surjection, hence quotient mapping. Also pr2(x, y) = pr2(x

′, y′) if and
only if y = y′ if and only if points (x, y) and (x′, y′) are in the same orbit.
Hence pr2 induces homeomorphism between X/G and R.

Previous paragraph implies that up to a homeomorphism the canonical
projection X 7→ X/G is just a projection pr2 : R2 → R, which is known to be
not closed mapping. For example if one takes

A = {(x, y) ∈ R2 | xy = 1},

then A is closed, but pr2(A) = R \ {0} is not closed.



2

3. Suppose G is a topological group and H is a closed subgroup of G. Use nets
to prove that the normalizer of H de�ned by

N(H) = {g ∈ G | gHg−1 = H}

is closed in G.
Also prove the following facts:
1) N(H) is a subgroup of G and H is a normal subgroup of N(H).
2) N(H) is the biggest subgroup of G which contains H as a normal subgroup
i.e. if H ≤ K ≤ G and H is normal in K, then K ⊂ N(H).

Solution: Suppose g ∈ N(H) and let (gα) be a net in N(H) that converges
to g. Then for every h ∈ H the net gαh(gα)

−1 converges to ghg−1 and stays
in H. Since H is closed, the limit ghg−1 ∈ H as well. Hence gHg−1 ⊂ H.
Similarly using the fact that (gα)

−1h(gα) converges to g−1hg we see that
gHg−1 ⊂ H. Hence g ∈ N(H).

Suppose g, g′ ∈ N(H), then

(gg′)N(H)(gg′)−1 = g(g′Hg′−1)g−1 = gHg−1 = H,

hence N(H) is closed under multiplication. Moreover multiplying gHg−1 = H
by g−1 on the left and g on the right we obtain H = g−1Hg, so if g ∈ N(H)
also g−1 ∈ N(H). If g ∈ H, then gHg−1 = H, since H is a subgroup, so
H ⊂ N(H), in particular N(H) is non-empty. Thus N(H) is a subgroup.

Suppose K ⊂ G a subgroup such that H ⊂ K. Then H is normal in K if
and only if gHg−1 = H for all k ∈ K, hence if and only if K ⊂ N(H). In
particular we see that H is closed in N(H).

4. Suppose X is a Hausdor� G-space. Let J ⊂ G be arbitrary. Prove that

XJ = XH ,

where H is a subgroup of G generated by J .

This result implies that it is enough to consider �xed point sets of closed
subgroups.

Solution: Suppose x ∈= XH . Since J ⊂ H, this implies in particular that
jx = x for all j ∈ J , so x ∈ XJ .
It remains to prove the converse inclusion

XJ ⊂ XH .

Let

K = {k ∈ J | kx = x for all x ∈ XJ}.
Then K is a subgroup:
1) ex = x for neutral element e ∈ G and x ∈ XJ ,
2) if kx = x and k′x = x for all x ∈ XJ , then

(kk′)x = k(k′x) = kx = x,
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3) if kx = x, then

x = k−1(kx) = k−1x.

AlsoK is closed since it is intersection of isotropy groups Gx where x ∈ XJ ,
which are closed by Lemma 1.3. Since jx = x for all x ∈ XJ by de�nition,
we see that J ⊂ K. Since H is the smallest subgroup of G that contains J ,
we must have H ⊂ K. Since K is closed this in turn implies that H ⊂ K.
In other words if x ∈ XJ , then hx = x for all h ∈ H, which implies that
x ∈ XH . Hence XJ ⊂ XH .

Remark: Since Lemma 1.3 is true also for T1 spaces, it is enough to as-
sume X is T1. Moreover XJ = XH is true for any G-space X.

5. Suppose G is a topological group, A ⊂ G is compact and B ⊂ G is closed.
Use nets to prove that the set

AB = {ab | a ∈ A, b ∈ B}

is closed in G.

Solution: Suppose (anbn) is a net in AB that converges towards g ∈ G.
Since A is compact, we may assume that the net (an) converges to some
a ∈ A. Continuity of algebraic operations then imply that bn = (a−1

n (anbn)
converges to a−1g. Since B is closed this implies that b = a−1g ∈ B. Hence
g = ab ∈ AB.

6. a) Consider the standard linear action of GL(n;R) on Rn. Prove that for
every subset J ⊂ GL(n;R) the �xed point set (Rn)J is a vector subspace of
Rn.
b) Consider the standard action of the orthogonal linear group O(n) on

Sn−1. Prove that for every subset J ⊂ O(n) the �xed point set (Sn−1)J is
homeomorphic to Sr for some r = −1, . . . , n− 1. Here S−1 = ∅.

Solution: a)Suppose x, y ∈ (Rn)J , λ ∈ R. Let A ∈ J . Then

A(x+ y) = Ax+ Ay = x+ y,

A(λx) = λA(x) = λx.

Since A0 = 0, 0 ∈ (Rn)J . We have proved that (Rn)J is a vector subspaces of
Rn.

b) By a) it is enough to prove that for every vector subspace V : Rn the
set V ∩ Sn−1 is homeomorphic to Sr for some r = −1, . . . , n − 1. Choo-
se an orthonormal basis v1, . . . , vr for V and complete it to the orthonor-
mal basis v1, . . . , vr, vr+1, . . . , vn of Rn. Let o be a matrix whose columns are
v1, . . . , vr, vr+1, . . . , vn in that order. Then O ∈ O(n) and O(ei) = vi for i =
1, . . . , r. Here e1, . . . , en is the standard basis ofRn, ei = (0, ldots, 0, 1, 0, . . . , 0).
Since O preserves norms, O maps Sr = {(x1, . . . , xr, 0, 0, . . . , 0) ∈ Sn−1}
precisely onto V ∩ Sn−1. Since O is a homeomorphism (as a linear isomorp-
hism), we obtain the claim.
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Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


