Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 5 20-24.02.2012

- 1. Prove the following claim using nets. Suppose C, X are topological spaces and C is compact. Then projection $pr_2: C \times X \to X$ is a closed mapping.
- 2. Prove that the mapping $\Phi \colon \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi(t, (x, y)) = (x + t, y)$ is action of the group $(\mathbb{R}, +) = G$ on the plane $\mathbb{R}^2 = X$. Prove that the orbit of this action is homeomorphic to \mathbb{R} and the canonical projection $X \mapsto X/G$ is not a closed mapping.
- 3. Suppose G is a topological group and H is a closed subgroup of G. Use nets to prove that the normalizer of H defined by

$$N(H) = \{ g \in G \mid gHg^{-1} = H \}$$

is closed in G.

Also prove the following facts:

1) N(H) is a subgroup of G and H is a normal subgroup of N(H). 2) N(H) is the biggest subgroup of G which contains H as a normal subgroup i.e. if $H \leq K \leq G$ and H is normal in K, then $K \subset N(H)$

4. Suppose X is a Hausdorff G-space. Let $J \subset G$ be arbitrary. Prove that

$$X^J = X^H,$$

where H is a subgroup of G generated by J.

This result implies that it is enough to consider fixed point sets of closed subgroups.

5. Suppose G is a topological group, $A \subset G$ is compact and $B \subset G$ is closed. Use nets to prove that the set

$$AB = \{ab \mid a \in A, b \in B\}$$

is closed in G.

6. a) Consider the standard linear action of $GL(n; \mathbb{R})$ on \mathbb{R}^n . Prove that for every subset $J \subset GL(n; \mathbb{R})$ the fixed point set $(\mathbb{R}^n)^J$ is a vector subspace of \mathbb{R}^n .

b) Consider the standard action of the orthogonal linear group O(n) on S^{n-1} . Prove that for every subset $J \subset O(n)$ the fixed point set $(S^{n-1})^J$ is homeomorphic to S^r for some $r = -1, \ldots, n-1$. Here $S^{-1} = \emptyset$.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.