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Exercise 4

Solutions

1. Suppose X is a topological space and G a topological group. A mapping
U: X x G — X is called right action of G on X if the identities
1) U(z,e) =z,
2) U(¥(z,9),9) = V¥(z,g9)
are satisfied for all x € X, g,¢" € G. If one uses notation V(z, g) = zg, these
requirements can be written in the form
re =z,

(z9)g" = z(99").
Suppose ®: G x X — X is a (left) action of G on X (as in definition 1.1).
Prove that the mapping ®: X x G — X defined by

®(z,9) = P9~ )
is a right action of G on X. R
Prove that the correspondence ® +— @ is a bijection between the set of all

(left) actions of G on X and the set of all right actions of G on X. What is
its inverse?

Solution: Suppose ®: G x X — X is a (left) action of G on X and the
mapping ®: X x G — X is defined by

O(x,g9) = (g, @).
Let us check that ® is a right action. For all z € X, g,¢" € G we have
Dz, e) = (e ', 2) = Ble,z) = =,
®(z,99') = D((99) " 2) = B(g g ) = (g, B(g 7 7)) =

o~ o~

= (I)((I)(g_17$)vg,) = (I)((I)([L',g),gl).
Hence @ is a right action.

Similarly if ¥: X x G — X is a right action we can define U:GxX = X
by the formula W(g, z) = W(x, g'). As above it is easy to check that U is a left
action, if ¥ is a right action. Also since (g71)~! = g for all g € G, it is easy to
verify that the correspondences ¢ — ® and ¥ — U are inverses of each other.

2. Suppose G is a topological group and H is its subgroup. Prove that the map-
ping &: H x G — G, ®(h,g) = hg is a (left) action of H on G and the
mapping V: G x H — G, V(g,h) = gh is a right action of H on G.

Suppose g € G. What is the isotropy subgroup H, with respect to action
d7



What is the orbit space defined by this action?

Can you come up with the example of a (left) action of H on G such that
the orbit space induced by this action would be precisely coset space G/H?

Solution: For all g € G,h,h' € H we have

€g =9,
(hh')g = h(Kg),
so ® is a left action. Similarly we see that U is a right action.

Suppose g € G. Then h € H, if and only if hg = g, which implies (multiply
by ¢! from the right in the group G) that h = e. Hence the isotropy group
H, is a trivial group {e} for all g € G.

The orbit of an element g € G is by definition the set

Hg={hg|heH}

i.e. the the right coset of g with respect to H. Hence the orbit space is the
space of right cosets H \ G ( with topology naturally defined by the canonical
projection 7: G — H \ G.

Similarly it is easy to realise that the orbit of ¢ € G with respect to right
action W is a left coset

gH ={gh | h € H}.
Corresponding left and right actions (see exercise 1) clearly have the same
orbit space, so we see immediately that the left action W of H on G defined

by U(h,g) = ¥(g,h™!) = gh™! is a left action, which orbit space is the space
of left cosets G/H.

. Suppose G is a topological group and H is its subgroup. Consider the ca-
nonical action of G on the coset space G/H defined by g - ¢H = (99')H
(example I11.1.3).

Let © = gH € G/H be arbitrary. What is the isotropy subgroup G,?
Prove that the kernel of this action is the biggest normal subgroup of G con-
tained in H (i.e. the kernel K is a normal subgroup of G, K C H and if L is
a normal subgroup of G such that L C H, then L C K).

Solution: Let z = gH € G/H, g € G. Then h € G, if and only if
hgH) = gH,
i.e. if and only if g~'hg € H if and only if g € gHg *. Hence G, = gHg™'.

The kernel of the action is then the intersection of all isotropy groups i.e.
the subgroup
K = NgeagHg™".
K is normal, since it is a kernel of (algebraic) homomorphism G — Homeo(X)
defined by g — ®,. Since H = eHe ! is one of the sets in the intersection
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NgecgHg ™, it follows that K C H. Suppose L is normal in G and L C H.
Since L is normal for every g € GG

L=gLg™ CgHg™",
so L C K.
. Consider the action of the special linear group G = SL(n;R) on X = R”
defined as usual by A-z = Az, A€ SL(n;R),x € R™.
What are the orbits of this action? What is the orbit space X/G? Is it Haus-
dorff? Tl? T()?
Is canonical projection X — X/G a closed mapping?

Solution: Consider first the case n = 1. Then SL(n;R) = [1] is a trivial
group, so orbits are singletons {z}, * € R and the orbit space is trivially R
(no non trivial identifications). This space is Hausdorff, 7} and Tp. The ca-
nonical projection R — R is just identity mapping, so is closed.

Suppose now n > 2. We claim that there exists precisely two orbits. Clear-
ly A0 =0 for all A € SL(n;R) so the orbit GO of the origin 0 € R" is just s
singleton {0}. It remains to show that all other points are in the same orbit. It
is enough to show that every x € R™\ {0} is in the orbit of e; = (1,0,...,0).
Suppose x € R",  # 0. Then there exists a linear basis x1, ..., x, of R" such
that x = x;. Let A be an n X n-matrix whose ¢th column is precisely x;. Then
A(e1) = x1 by construction and A is invertible (since its column are linear-
ly independent) i.e. det A # 0. This matrix is not necessarily an element of
SL(n;R), but if we multiply the last n-th column by ﬁ we obtain a matrix
B such that det B = iztfx = 1, since det is multilinear function of the columns.
Hence B € SL(n;R). Since n > 2 the first column of B is the same as the first
column of A, i.e. . Hence B(e;) = x, so every « # 0 is in the same orbit as e;.

It follows that X /G is s two point space Y = {a, b}, where a = R™\{0},b =
{0}. By checking the inverse images of subsets of Y in X we see that the on-
ly open subsets of Y are (), Y and the singleton {a}. Consequently Y is not
Hausdortf or even 77 (singleton {a} is not closed). It is Tp, since a has a neigh-
bourhood {a} that does not include b. The projection mapping p: X — X/G
is not closed, since for every z # 0 the image of the closed set {z} is {a},
which is not closed.

. Consider the action of the orthogonal linear group G = O(n) on X = R”
defined as usual by A-z = Az, A € O(n),z € R™.

What are the orbits of this action? What is the orbit space X/G? Is it Haus-
dorff? T17 TO?

O(n) also acts on S™! by the same formula. What is the orbit space of
this action?

Solution: Suppose x and y are in the same orbit. Then there exists ortogonal
A € O(n) such that Az = y. Since A preserves norms (exercise 2.2)

|z = [Az| =yl



Let us prove the opposite. Suppose |z| = |y| = r > 0. We claim that = and
y are in the same orbit. If » = 0, then x = y and the claim is clear. Suppose
r > 0. It is enough to show that any point x with || = r is in the orbit of re;.
Let ' = x/r, then |z'| = 1, so by linear algebra there exists an orthonormal
basis ay, ..., a, of R” such that 2’ = a;. Let A be an n X n matrix, whose ith
column is a; for all i = 1,...,n. Then A € O(n) by construction (exericise
2.2.) and A(e;) = ay. Since A acts linearly A(re;) = rA(e;) = ra; = x. The
claim is proved.

Hence the orbits of this action are circles
S,={xeR"||z|=r},r>0

centered at origin (including degenerated case r = 0). Define a mapping
f: X—=>Ry={zxeR|z>0}by f(xr) =|z|. Then f is continuous surjecti-
ve and f(x) = f(y) if and only if x and y are in the same orbit of the action,
hence f induces continuous bijection f: X/G — Ry such that form=f.
Here 7: X — X/G is a canonical projection.

To show that f is actually homeomorphism, we notice that f has a left inverse
j: Ry — X defined by j(r) = (r,0,...,0). Then foj =1id, so fo(moj) = id.
Since f is bijection it follows that pi o j is its inverse. Since this inverse is
continuous, it follows that f is homeomorphism.

Hence X /G is homeomorphic to R, so is Hausdorft, T} and 7.
Alternatively one can use Theorem 1.11(1), because O(n) is compact.

When we consider the restricted action of O(n) on S™~! it follows from the
observations above that there is only one orbit. Hence the orbit space in this
case is a singleton space.

. Consider the action of the orthogonal linear group G = O(n) on X = R”
defined as above by A-x = Az, A€ O(n),z € R".

a) Prove that the isotropy group G, is isomorphic (as a topological group)
to O(n —1).
Here e, = (0,...,0,1).

b) Suppose x € R,z # 0. Prove that the isotropy group G, is isomorphic
(as a topological group) to O(n—1). (Hint: a) and Lemma 1.17). What about
the isotropy group G?

Solution: a) Suppose an orthogonal matrix A € O(n) is in G, i.e. Ae,, = e,,.
This means precisely that the last column of A is e, = (0,...,0,1). Since A
is orthogonal the set A(e1) = a1, A(e2) = ag,..., Ale;) = a;,..., Alen) = e,
of the columns of A (regarded as vectors of R" is orthonormal (exercise 2.2),
so in particular a; - e, = 0 for ¢ < n, so it follows that the last row of A is



(0,...,1), i.e. Alooks like a matrix

A0
=)
where A" is (n — 1) x (n — 1) matrix. It is easy to see that A’ is orthonormal.
Conversely any matrix of the type

A0
=[5
where A’ € O(n—1) is orthonormal and Ae,, = e,,. It follows that the mapping
a: O(n —1) = G,, defined by
A0
/
A= [0 1]

is an isomorphism of groups. It is easy to check that it is homeomorphism as
well. Hence G.,, is isomorphic to O(n — 1) as a topological group.

Suppose x # 0 and let k = |z| > 0. By exercise 5 above x and ke,, are in the
same orbit. By Lemma 1.17 G, and Gy,, are conjugate to each other, hence
isomorphic as topological group (since conjugation in a topological group is
clearly homeomorphism and isomorphism of groups). It remains to prove that
Gre, = Ge, = O(n—1). Suppose A € O(n), A(ke,,) = ke,,. Then by linearity
of A we have kA(e,) = ke, which implies (k # 0!), that A(e,) = e,. Hence
A € G,,. Conversely if Ae, = e,, then by linearity A(ke,) = kA(e,) = ke,,.
We are done.

Since 0 is fixed by any matrix A € O(n), it follows that Gy = O(n) is the
whole group.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



