Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 4
Solutions

1. Suppose X is a topological space and G a topological group. A mapping $\Psi: X \times G \rightarrow X$ is called right action of G on X if the identities
1) $\Psi(x, e)=x$,
2) $\Psi\left(\Psi(x, g), g^{\prime}\right)=\Psi\left(x, g g^{\prime}\right)$
are satisfied for all $x \in X, g, g^{\prime} \in G$. If one uses notation $\Psi(x, g)=x g$, these requirements can be written in the form

$$
\begin{aligned}
x e & =x \\
(x g) g^{\prime} & =x\left(g g^{\prime}\right) .
\end{aligned}
$$

Suppose $\Phi: G \times X \rightarrow X$ is a (left) action of G on X (as in definition 1.1). Prove that the mapping $\widehat{\Phi}: X \times G \rightarrow X$ defined by

$$
\widehat{\Phi}(x, g)=\Phi\left(g^{-1}, x\right)
$$

is a right action of G on X.
Prove that the correspondence $\Phi \mapsto \widehat{\Phi}$ is a bijection between the set of all (left) actions of G on X and the set of all right actions of G on X. What is its inverse?

Solution: Suppose $\Phi: G \times X \rightarrow X$ is a (left) action of G on X and the mapping $\widehat{\Phi}: X \times G \rightarrow X$ is defined by

$$
\widehat{\Phi}(x, g)=\Phi\left(g^{-1}, x\right) .
$$

Let us check that $\widehat{\Phi}$ is a right action. For all $x \in X, g, g^{\prime} \in G$ we have

$$
\begin{gathered}
\widehat{\Phi}(x, e)=\Phi\left(e^{-1}, x\right)=\Phi(e, x)=x \\
\widehat{\Phi}\left(x, g g^{\prime}\right)=\Phi\left(\left(g g^{\prime}\right)^{-1}, x\right)=\Phi\left(g^{\prime-1} g^{-1}, x\right)=\Phi\left(g^{\prime-1}, \Phi\left(g^{-1}, x\right)\right)= \\
=\widehat{\Phi}\left(\Phi\left(g^{-1}, x\right), g^{\prime}\right)=\widehat{\Phi}\left(\widehat{\Phi}(x, g), g^{\prime}\right) .
\end{gathered}
$$

Hence $\widehat{\Phi}$ is a right action.
Similarly if $\Psi: X \times G \rightarrow X$ is a right action we can define $\widetilde{\Psi}: G \times X \rightarrow X$ by the formula $\widetilde{\Psi}(g, x)=\Psi\left(x, g^{-1}\right)$. As above it is easy to check that $\widetilde{\Psi}$ is a left action, if Ψ is a right action. Also since $\left(g^{-1}\right)^{-1}=g$ for all $g \in G$, it is easy to verify that the correspondences $\Phi \mapsto \widehat{\Phi}$ and $\Psi \mapsto \widetilde{\Psi}$ are inverses of each other.
2. Suppose G is a topological group and H is its subgroup. Prove that the mapping $\Phi: H \times G \rightarrow G, \Phi(h, g)=h g$ is a (left) action of H on G and the mapping $\Psi: G \times H \rightarrow G, \Psi(g, h)=g h$ is a right action of H on G.

Suppose $g \in G$. What is the isotropy subgroup H_{g} with respect to action Φ ?

What is the orbit space defined by this action?
Can you come up with the example of a (left) action of H on G such that the orbit space induced by this action would be precisely coset space G / H ?

Solution: For all $g \in G, h, h^{\prime} \in H$ we have

$$
\begin{gathered}
e g=g \\
\left(h h^{\prime}\right) g=h\left(h^{\prime} g\right)
\end{gathered}
$$

so Φ is a left action. Similarly we see that Ψ is a right action.
Suppose $g \in G$. Then $h \in H_{g}$ if and only if $h g=g$, which implies (multiply by g^{-1} from the right in the group G) that $h=e$. Hence the isotropy group H_{g} is a trivial group $\{e\}$ for all $g \in G$.
The orbit of an element $g \in G$ is by definition the set

$$
H g=\{h g \mid h \in H\}
$$

i.e. the the right coset of g with respect to H. Hence the orbit space is the space of right cosets $H \backslash G$ (with topology naturally defined by the canonical projection $\pi: G \rightarrow H \backslash G$.

Similarly it is easy to realise that the orbit of $g \in G$ with respect to right action Ψ is a left coset

$$
g H=\{g h \mid h \in H\} .
$$

Corresponding left and right actions (see exercise 1) clearly have the same orbit space, so we see immediately that the left action $\widetilde{\Psi}$ of H on G defined by $\widetilde{\Psi}(h, g)=\Psi\left(g, h^{-1}\right)=g h^{-1}$ is a left action, which orbit space is the space of left cosets G / H.
3. Suppose G is a topological group and H is its subgroup. Consider the canonical action of G on the coset space G / H defined by $g \cdot g^{\prime} H=\left(g g^{\prime}\right) H$ (example III.1.3).

Let $x=g H \in G / H$ be arbitrary. What is the isotropy subgroup G_{x} ?
Prove that the kernel of this action is the biggest normal subgroup of G contained in H (i.e. the kernel K is a normal subgroup of $G, K \subset H$ and if L is a normal subgroup of G such that $L \subset H$, then $L \subset K$).

Solution: Let $x=g H \in G / H, g \in G$. Then $h \in G_{x}$ if and only if

$$
h(g H)=g H,
$$

i.e. if and only if $g^{-1} h g \in H$ if and only if $g \in g H g^{-1}$. Hence $G_{x}=g H g^{-1}$.

The kernel of the action is then the intersection of all isotropy groups i.e. the subgroup

$$
K=\cap_{g \in G} g H g^{-1} .
$$

K is normal, since it is a kernel of (algebraic) homomorphism $G \rightarrow \operatorname{Homeo}(X)$ defined by $g \mapsto \Phi_{g}$. Since $H=e H e^{-1}$ is one of the sets in the intersection
$\cap_{g \in G} g H^{-1}$, it follows that $K \subset H$. Suppose L is normal in G and $L \subset H$. Since L is normal for every $g \in G$

$$
L=g L g^{-1} \subset g H g^{-1},
$$

so $L \subset K$.
4. Consider the action of the special linear group $G=S L(n ; \mathbb{R})$ on $X=\mathbb{R}^{n}$ defined as usual by $A \cdot x=A x, A \in S L(n ; \mathbb{R}), x \in \mathbb{R}^{n}$.
What are the orbits of this action? What is the orbit space X / G ? Is it Hausdorff? T_{1} ? T_{0} ?.
Is canonical projection $X \rightarrow X / G$ a closed mapping?
Solution: Consider first the case $n=1$. Then $S L(n ; \mathbb{R})=[1]$ is a trivial group, so orbits are singletons $\{x\}, x \in \mathbb{R}$ and the orbit space is trivially \mathbb{R} (no non trivial identifications). This space is Hausdorff, T_{1} and T_{0}. The canonical projection $\mathbb{R} \rightarrow \mathbb{R}$ is just identity mapping, so is closed.

Suppose now $n \geq 2$. We claim that there exists precisely two orbits. Clearly $A 0=0$ for all $A \in S L(n ; \mathbb{R})$ so the orbit $G 0$ of the origin $0 \in \mathbb{R}^{n}$ is just s singleton $\{0\}$. It remains to show that all other points are in the same orbit. It is enough to show that every $x \in \mathbb{R}^{n} \backslash\{0\}$ is in the orbit of $e_{1}=(1,0, \ldots, 0)$. Suppose $x \in \mathbb{R}^{n}, x \neq 0$. Then there exists a linear basis x_{1}, \ldots, x_{n} of R^{n} such that $x=x_{1}$. Let A be an $n \times n$-matrix whose i th column is precisely x_{i}. Then $A\left(e_{1}\right)=x_{1}$ by construction and A is invertible (since its column are linearly independent) i.e. $\operatorname{det} A \neq 0$. This matrix is not necessarily an element of $S L(n ; \mathbb{R})$, but if we multiply the last n-th column by $\frac{1}{\operatorname{det} A}$ we obtain a matrix B such that $\operatorname{det} B=\frac{\operatorname{det} A}{\operatorname{det} A}=1$, since det is multilinear function of the columns. Hence $B \in S L(n ; \mathbb{R})$. Since $n \geq 2$ the first column of B is the same as the first column of A, i.e. x. Hence $B\left(e_{1}\right)=x$, so every $x \neq 0$ is in the same orbit as e_{1}.

It follows that X / G is s two point space $Y=\{a, b\}$, where $a=\mathbb{R}^{n} \backslash\{0\}, b=$ $\{0\}$. By checking the inverse images of subsets of Y in X we see that the only open subsets of Y are \emptyset, Y and the singleton $\{a\}$. Consequently Y is not Hausdorff or even T_{1} (singleton $\{a\}$ is not closed). It is T_{0}, since a has a neighbourhood $\{a\}$ that does not include b. The projection mapping $p: X \rightarrow X / G$ is not closed, since for every $x \neq 0$ the image of the closed set $\{x\}$ is $\{a\}$, which is not closed.
5. Consider the action of the orthogonal linear group $G=O(n)$ on $X=\mathbb{R}^{n}$ defined as usual by $A \cdot x=A x, A \in O(n), x \in \mathbb{R}^{n}$.
What are the orbits of this action? What is the orbit space X / G ? Is it Hausdorff? T_{1} ? T_{0} ?.
$O(n)$ also acts on S^{n-1} by the same formula. What is the orbit space of this action?

Solution: Suppose x and y are in the same orbit. Then there exists ortogonal $A \in O(n)$ such that $A x=y$. Since A preserves norms (exercise 2.2)

$$
|x|=|A x|=|y| .
$$

Let us prove the opposite. Suppose $|x|=|y|=r \geq 0$. We claim that x and y are in the same orbit. If $r=0$, then $x=y$ and the claim is clear. Suppose $r>0$. It is enough to show that any point x with $|x|=r$ is in the orbit of $r e_{1}$. Let $x^{\prime}=x / r$, then $\left|x^{\prime}\right|=1$, so by linear algebra there exists an orthonormal basis a_{1}, \ldots, a_{n} of \mathbb{R}^{n} such that $x^{\prime}=a_{1}$. Let A be an $n \times n$ matrix, whose i th column is a_{i} for all $i=1, \ldots, n$. Then $A \in O(n)$ by construction (exericise 2.2.) and $A\left(e_{1}\right)=a_{1}$. Since A acts linearly $A\left(r e_{1}\right)=r A\left(e_{1}\right)=r a_{1}=x$. The claim is proved.

Hence the orbits of this action are circles

$$
S_{r}=\left\{x \in \mathbb{R}^{n}| | x \mid=r\right\}, r \geq 0
$$

centered at origin (including degenerated case $r=0$). Define a mapping $f: X \rightarrow \mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$ by $f(x)=|x|$. Then f is continuous surjective and $f(x)=f(y)$ if and only if x and y are in the same orbit of the action, hence f induces continuous bijection $\tilde{f}: X / G \rightarrow \mathbb{R}_{+}$such that $\tilde{f} \circ \pi=f$. Here $\pi: X \rightarrow X / G$ is a canonical projection.
To show that \tilde{f} is actually homeomorphism, we notice that f has a left inverse $j: \mathbb{R}_{+} \rightarrow X$ defined by $j(r)=(r, 0, \ldots, 0)$. Then $f \circ j=\mathrm{id}$, so $\tilde{f} \circ(\pi \circ j)=i d$. Since \tilde{f} is bijection it follows that $p i \circ j$ is its inverse. Since this inverse is continuous, it follows that \tilde{f} is homeomorphism.

Hence X / G is homeomorphic to \mathbb{R}_{+}, so is Hausdorff, T_{1} and T_{0}. Alternatively one can use Theorem 1.11(1), because $O(n)$ is compact.

When we consider the restricted action of $O(n)$ on S^{n-1} it follows from the observations above that there is only one orbit. Hence the orbit space in this case is a singleton space.
6.
6. Consider the action of the orthogonal linear group $G=O(n)$ on $X=\mathbb{R}^{n}$ defined as above by $A \cdot x=A x, A \in O(n), x \in \mathbb{R}^{n}$.
a) Prove that the isotropy group $G_{e_{n}}$ is isomorphic (as a topological group) to $O(n-1)$.
Here $e_{n}=(0, \ldots, 0,1)$.
b) Suppose $x \in \mathbb{R}^{n}, x \neq 0$. Prove that the isotropy group G_{x} is isomorphic (as a topological group) to $O(n-1)$. (Hint: a) and Lemma 1.17). What about the isotropy group G_{0} ?

Solution: a) Suppose an orthogonal matrix $A \in O(n)$ is in $G_{e_{n}}$ i.e. $A e_{n}=e_{n}$. This means precisely that the last column of A is $e_{n}=(0, \ldots, 0,1)$. Since A is orthogonal the set $A\left(e_{1}\right)=a_{1}, A\left(e_{2}\right)=a_{2}, \ldots, A\left(e_{i}\right)=a_{i}, \ldots, A\left(e_{n}\right)=e_{n}$ of the columns of A (regarded as vectors of \mathbb{R}^{n} is orthonormal (exercise 2.2), so in particular $a_{i} \cdot e_{n}=0$ for $i<n$, so it follows that the last row of A is
$(0, \ldots, 1)$, i.e. A looks like a matrix

$$
A=\left[\begin{array}{cc}
A^{\prime} & 0 \\
0 & 1
\end{array}\right]
$$

where A^{\prime} is $(n-1) \times(n-1)$ matrix. It is easy to see that A^{\prime} is orthonormal. Conversely any matrix of the type

$$
A=\left[\begin{array}{cc}
A^{\prime} & 0 \\
0 & 1
\end{array}\right]
$$

where $A^{\prime} \in O(n-1)$ is orthonormal and $A e_{n}=e_{n}$. It follows that the mapping $\alpha: O(n-1) \rightarrow G_{e_{n}}$ defined by

$$
A^{\prime} \mapsto\left[\begin{array}{cc}
A^{\prime} & 0 \\
0 & 1
\end{array}\right]
$$

is an isomorphism of groups. It is easy to check that it is homeomorphism as well. Hence $G_{e_{n}}$ is isomorphic to $O(n-1)$ as a topological group.

Suppose $x \neq 0$ and let $k=|x|>0$. By exercise 5 above x and $k e_{n}$ are in the same orbit. By Lemma $1.17 G_{x}$ and $G_{k e_{n}}$ are conjugate to each other, hence isomorphic as topological group (since conjugation in a topological group is clearly homeomorphism and isomorphism of groups). It remains to prove that $G_{k e_{n}}=G_{e_{n}} \cong O(n-1)$. Suppose $A \in O(n), A\left(k e_{n}\right)=k e_{n}$. Then by linearity of A we have $k A\left(e_{n}\right)=k e_{n}$, which implies ($k \neq 0$!), that $A\left(e_{n}\right)=e_{n}$. Hence $A \in G_{e_{n}}$. Conversely if $A e_{n}=e_{n}$, then by linearity $A\left(k e_{n}\right)=k A\left(e_{n}\right)=k e_{n}$. We are done.

Since 0 is fixed by any matrix $A \in O(n)$, it follows that $G_{0}=O(n)$ is the whole group.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

