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1. Suppose X is a topological space and G a topological group. A mapping
Ψ: X ×G → X is called right action of G on X if the identities
1) Ψ(x, e) = x,
2) Ψ(Ψ(x, g), g′) = Ψ(x, gg′)
are satis�ed for all x ∈ X, g, g′ ∈ G. If one uses notation Ψ(x, g) = xg, these
requirements can be written in the form

xe = x,

(xg)g′ = x(gg′).

Suppose Φ: G×X → X is a (left) action of G on X (as in de�nition 1.1).

Prove that the mapping Φ̂ : X ×G → X de�ned by

Φ̂(x, g) = Φ(g−1, x)

is a right action of G on X.
Prove that the correspondence Φ 7→ Φ̂ is a bijection between the set of all
(left) actions of G on X and the set of all right actions of G on X. What is
its inverse?

Solution: Suppose Φ: G × X → X is a (left) action of G on X and the

mapping Φ̂ : X ×G → X is de�ned by

Φ̂(x, g) = Φ(g−1, x).

Let us check that Φ̂ is a right action. For all x ∈ X, g, g′ ∈ G we have

Φ̂(x, e) = Φ(e−1, x) = Φ(e, x) = x,

Φ̂(x, gg′) = Φ((gg′)−1, x) = Φ(g′−1g−1, x) = Φ(g′−1,Φ(g−1, x)) =

= Φ̂(Φ(g−1, x), g′) = Φ̂(Φ̂(x, g), g′).

Hence Φ̂ is a right action.

Similarly if Ψ: X ×G → X is a right action we can de�ne Ψ̃ : G×X → X

by the formula Ψ̃(g, x) = Ψ(x, g−1). As above it is easy to check that Ψ̃ is a left
action, if Ψ is a right action. Also since (g−1)−1 = g for all g ∈ G, it is easy to

verify that the correspondences Φ 7→ Φ̂ and Ψ 7→ Ψ̃ are inverses of each other.

2. Suppose G is a topological group and H is its subgroup. Prove that the map-
ping Φ: H × G → G, Φ(h, g) = hg is a (left) action of H on G and the
mapping Ψ: G×H → G, Ψ(g, h) = gh is a right action of H on G.

Suppose g ∈ G. What is the isotropy subgroup Hg with respect to action
Φ?
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What is the orbit space de�ned by this action?

Can you come up with the example of a (left) action of H on G such that
the orbit space induced by this action would be precisely coset space G/H?

Solution: For all g ∈ G, h, h′ ∈ H we have

eg = g,

(hh′)g = h(h′g),

so Φ is a left action. Similarly we see that Ψ is a right action.

Suppose g ∈ G. Then h ∈ Hg if and only if hg = g, which implies (multiply
by g−1 from the right in the group G) that h = e. Hence the isotropy group
Hg is a trivial group {e} for all g ∈ G.
The orbit of an element g ∈ G is by de�nition the set

Hg = {hg | h ∈ H}
i.e. the the right coset of g with respect to H. Hence the orbit space is the
space of right cosets H \G ( with topology naturally de�ned by the canonical
projection π : G → H \G.

Similarly it is easy to realise that the orbit of g ∈ G with respect to right
action Ψ is a left coset

gH = {gh | h ∈ H}.
Corresponding left and right actions (see exercise 1) clearly have the same

orbit space, so we see immediately that the left action Ψ̃ of H on G de�ned
by Ψ̃(h, g) = Ψ(g, h−1) = gh−1 is a left action, which orbit space is the space
of left cosets G/H.

3. Suppose G is a topological group and H is its subgroup. Consider the ca-
nonical action of G on the coset space G/H de�ned by g · g′H = (gg′)H
(example III.1.3).

Let x = gH ∈ G/H be arbitrary. What is the isotropy subgroup Gx?
Prove that the kernel of this action is the biggest normal subgroup of G con-
tained in H (i.e. the kernel K is a normal subgroup of G, K ⊂ H and if L is
a normal subgroup of G such that L ⊂ H, then L ⊂ K).

Solution: Let x = gH ∈ G/H, g ∈ G. Then h ∈ Gx if and only if

h(gH) = gH,

i.e. if and only if g−1hg ∈ H if and only if g ∈ gHg−1. Hence Gx = gHg−1.

The kernel of the action is then the intersection of all isotropy groups i.e.
the subgroup

K = ∩g∈GgHg−1.

K is normal, since it is a kernel of (algebraic) homomorphismG → Homeo(X)
de�ned by g 7→ Φg. Since H = eHe−1 is one of the sets in the intersection
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∩g∈GgHg−1, it follows that K ⊂ H. Suppose L is normal in G and L ⊂ H.
Since L is normal for every g ∈ G

L = gLg−1 ⊂ gHg−1,

so L ⊂ K.
4. Consider the action of the special linear group G = SL(n;R) on X = Rn

de�ned as usual by A · x = Ax, A ∈ SL(n;R), x ∈ Rn.
What are the orbits of this action? What is the orbit space X/G? Is it Haus-
dor�? T1? T0?.
Is canonical projection X → X/G a closed mapping?

Solution: Consider �rst the case n = 1. Then SL(n;R) = [1] is a trivial
group, so orbits are singletons {x}, x ∈ R and the orbit space is trivially R
(no non trivial identi�cations). This space is Hausdor�, T1 and T0. The ca-
nonical projection R → R is just identity mapping, so is closed.

Suppose now n ≥ 2. We claim that there exists precisely two orbits. Clear-
ly A0 = 0 for all A ∈ SL(n;R) so the orbit G0 of the origin 0 ∈ Rn is just s
singleton {0}. It remains to show that all other points are in the same orbit. It
is enough to show that every x ∈ Rn \ {0} is in the orbit of e1 = (1, 0, . . . , 0).
Suppose x ∈ Rn, x ̸= 0. Then there exists a linear basis x1, . . . , xn of Rn such
that x = x1. Let A be an n×n-matrix whose ith column is precisely xi. Then
A(e1) = x1 by construction and A is invertible (since its column are linear-
ly independent) i.e. detA ̸= 0. This matrix is not necessarily an element of
SL(n;R), but if we multiply the last n-th column by 1

detA
we obtain a matrix

B such that detB = detA
detA

= 1, since det is multilinear function of the columns.
Hence B ∈ SL(n;R). Since n ≥ 2 the �rst column of B is the same as the �rst
column of A, i.e. x. Hence B(e1) = x, so every x ̸= 0 is in the same orbit as e1.

It follows that X/G is s two point space Y = {a, b}, where a = Rn\{0}, b =
{0}. By checking the inverse images of subsets of Y in X we see that the on-
ly open subsets of Y are ∅, Y and the singleton {a}. Consequently Y is not
Hausdor� or even T1 (singleton {a} is not closed). It is T0, since a has a neigh-
bourhood {a} that does not include b. The projection mapping p : X → X/G
is not closed, since for every x ̸= 0 the image of the closed set {x} is {a},
which is not closed.

5. Consider the action of the orthogonal linear group G = O(n) on X = Rn

de�ned as usual by A · x = Ax, A ∈ O(n), x ∈ Rn.
What are the orbits of this action? What is the orbit space X/G? Is it Haus-
dor�? T1? T0?.

O(n) also acts on Sn−1 by the same formula. What is the orbit space of
this action?

Solution: Suppose x and y are in the same orbit. Then there exists ortogonal
A ∈ O(n) such that Ax = y. Since A preserves norms (exercise 2.2)

|x| = |Ax| = |y|.
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Let us prove the opposite. Suppose |x| = |y| = r ≥ 0. We claim that x and
y are in the same orbit. If r = 0, then x = y and the claim is clear. Suppose
r > 0. It is enough to show that any point x with |x| = r is in the orbit of re1.
Let x′ = x/r, then |x′| = 1, so by linear algebra there exists an orthonormal
basis a1, . . . , an of Rn such that x′ = a1. Let A be an n×n matrix, whose ith
column is ai for all i = 1, . . . , n. Then A ∈ O(n) by construction (exericise
2.2.) and A(e1) = a1. Since A acts linearly A(re1) = rA(e1) = ra1 = x. The
claim is proved.

Hence the orbits of this action are circles

Sr = {x ∈ Rn | |x| = r}, r ≥ 0

centered at origin (including degenerated case r = 0). De�ne a mapping
f : X → R+ = {x ∈ R | x ≥ 0} by f(x) = |x|. Then f is continuous surjecti-
ve and f(x) = f(y) if and only if x and y are in the same orbit of the action,

hence f induces continuous bijection f̃ : X/G → R+ such that f̃ ◦ π = f .
Here π : X → X/G is a canonical projection.

To show that f̃ is actually homeomorphism, we notice that f has a left inverse
j : R+ → X de�ned by j(r) = (r, 0, . . . , 0). Then f ◦ j = id, so f̃ ◦ (π ◦ j) = id.

Since f̃ is bijection it follows that pi ◦ j is its inverse. Since this inverse is
continuous, it follows that f̃ is homeomorphism.

Hence X/G is homeomorphic to R+, so is Hausdor�, T1 and T0.
Alternatively one can use Theorem 1.11(1), because O(n) is compact.

When we consider the restricted action of O(n) on Sn−1 it follows from the
observations above that there is only one orbit. Hence the orbit space in this
case is a singleton space.

6.
6. Consider the action of the orthogonal linear group G = O(n) on X = Rn

de�ned as above by A · x = Ax, A ∈ O(n), x ∈ Rn.

a) Prove that the isotropy group Gen is isomorphic (as a topological group)
to O(n− 1).
Here en = (0, . . . , 0, 1).

b) Suppose x ∈ Rn, x ̸= 0. Prove that the isotropy group Gx is isomorphic
(as a topological group) to O(n−1). (Hint: a) and Lemma 1.17). What about
the isotropy group G0?

Solution: a) Suppose an orthogonal matrix A ∈ O(n) is in Gen i.e. Aen = en.
This means precisely that the last column of A is en = (0, . . . , 0, 1). Since A
is orthogonal the set A(e1) = a1, A(e2) = a2, . . . , A(ei) = ai, . . . , A(en) = en
of the columns of A (regarded as vectors of Rn is orthonormal (exercise 2.2),
so in particular ai · en = 0 for i < n, so it follows that the last row of A is



5

(0, . . . , 1), i.e. A looks like a matrix

A =

[
A′ 0
0 1

]
,

where A′ is (n− 1)× (n− 1) matrix. It is easy to see that A′ is orthonormal.
Conversely any matrix of the type

A =

[
A′ 0
0 1

]
,

where A′ ∈ O(n−1) is orthonormal and Aen = en. It follows that the mapping
α : O(n− 1) → Gen de�ned by

A′ 7→
[
A′ 0
0 1

]
is an isomorphism of groups. It is easy to check that it is homeomorphism as
well. Hence Gen is isomorphic to O(n− 1) as a topological group.

Suppose x ̸= 0 and let k = |x| > 0. By exercise 5 above x and ken are in the
same orbit. By Lemma 1.17 Gx and Gken are conjugate to each other, hence
isomorphic as topological group (since conjugation in a topological group is
clearly homeomorphism and isomorphism of groups). It remains to prove that
Gken = Gen

∼= O(n− 1). Suppose A ∈ O(n), A(ken) = ken. Then by linearity
of A we have kA(en) = ken, which implies (k ̸= 0!), that A(en) = en. Hence
A ∈ Gen . Conversely if Aen = en, then by linearity A(ken) = kA(en) = ken.
We are done.

Since 0 is �xed by any matrix A ∈ O(n), it follows that G0 = O(n) is the
whole group.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


