Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 4
13-17.02.2012

1. Suppose X is a topological space and G a topological group. A mapping $\Psi: X \times G \rightarrow X$ is called right action of G on X if the identities
1) $\Psi(x, e)=x$,
2) $\Psi\left(\Psi(x, g), g^{\prime}\right)=\Psi\left(x, g g^{\prime}\right)$
are satisfied for all $x \in X, g, g^{\prime} \in G$. If one uses notation $\Psi(x, g)=x g$, these requirements can be written in the form

$$
\begin{aligned}
x e & =x \\
(x g) g^{\prime} & =x\left(g g^{\prime}\right)
\end{aligned}
$$

Suppose $\Phi: G \times X \rightarrow X$ is a (left) action of G on X (as in definition 1.1). Prove that the mapping $\widehat{\Phi}: X \times G \rightarrow X$ defined by

$$
\widehat{\Phi}(x, g)=\Phi\left(g^{-1}, x\right)
$$

is a right action of G on X.
Prove that the correspondence $\Phi \mapsto \widehat{\Phi}$ is a bijection between the set of all (left) actions of G on X and the set of all right actions of G on X. What is its inverse?
2. Suppose G is a topological group and H is its subgroup. Prove that the mapping $\Phi: H \times G \rightarrow G, \Phi(h, g)=h g$ is a (left) action of H on G and the mapping $\Psi: G \times H \rightarrow G, \Psi(g, h)=g h$ is a right action of H on G.

Suppose $g \in G$. What is the isotropy subgroup H_{g} with respect to action Φ ?
What is the orbit space defined by this action?
Can you come up with the example of a (left) action of H on G such that the orbit space induced by this action would be precisely coset space G / H ?
3. Suppose G is a topological group and H is its subgroup. Consider the canonical action of G on the coset space G / H defined by $g \cdot g^{\prime} H=\left(g g^{\prime}\right) H$ (example III.1.3).

Let $x=g H \in G / H$ be arbitrary. What is the isotropy subgroup G_{x} ?
Prove that the kernel of this action is the biggest normal subgroup of G contained in H (I.e. the kernel K is a normal subgroup of $G, K \subset H$ and if L is a normal subgroup of G such that $L \subset H$, then $L \subset K$).
4. Consider the action of the special linear group $G=S L(n ; \mathbb{R})$ on $X=\mathbb{R}^{n}$ defined as usual by $A \cdot x=A x, A \in S L(n ; \mathbb{R}), x \in \mathbb{R}^{n}$.

What are the orbits of this action? What is the orbit space X / G ? Is it Hausdorff? T_{1} ? T_{0} ?.
Is canonical projection $X \rightarrow X / G$ a closed mapping?
5. Consider the action of the orthogonal linear group $G=O(n)$ on $X=\mathbb{R}^{n}$ defined as usual by $A \cdot x=A x, A \in O(n), x \in \mathbb{R}^{n}$.
What are the orbits of this action? What is the orbit space X / G ? Is it Hausdorff? T_{1} ? T_{0} ?.
$O(n)$ also acts on S^{n-1} by the same formula. What is the orbit space of this action?
6. Consider the action of the orthogonal linear group $G=O(n)$ on $X=\mathbb{R}^{n}$ defined as above by $A \cdot x=A x, A \in O(n), x \in \mathbb{R}^{n}$.
a) Prove that the isotropy group $G_{e_{n}}$ is isomorphic (as a topological group) to $O(n-1)$.
Here $e_{n}=(0, \ldots, 0,1)$.
b) Suppose $x \in \mathbb{R}^{n}, x \neq 0$. Prove that the isotropy group G_{x} is isomorphic (as a topological group) to $O(n-1)$. (Hint: a) and Lemma 1.17). What about the isotropy group G_{0} ?

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

