Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 2
Solutions

1. Suppose $A=\left(a_{i j}\right)$ is a real $n \times m$ matrix. Recall that its transpose A^{T} is defined as an $m \times n$ matrix with $\left(A^{T}\right)_{i j}=a_{j i}$. Also recall that the standard inner product • in \mathbb{R}^{n} is defined by

$$
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i},
$$

$x, y \in \mathbb{R}^{n}$.
a) Suppose A is an $n \times m$ matrix as above. Prove that

$$
A x \cdot y=x \cdot A^{T} y
$$

for all $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$.
b) Prove that the equation above characterises A^{T} uniquely, i.e. if B is an $m \times n$ matrix such that

$$
A x \cdot y=x \cdot B y
$$

for all $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, then $B=A^{T}$.
Solution: a) If A is $n \times m$ matrix and $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$, then $A x=$ $\left(y_{1}, \ldots y_{n}\right) \in \mathbb{R}^{n}$, where

$$
y_{i}=\sum_{j=1}^{m} a_{i j} x_{j} .
$$

Hence it follows also that $A^{T} y=\left(z_{1}, \ldots, z_{m}\right)$, where

$$
z_{j}=\sum_{i=1}^{n} a_{i j} y_{i} .
$$

Now

$$
A x \cdot y=\sum_{i=1}^{n}(A x)_{i} y_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{i j} x_{j}\right) y_{i}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i j} y_{i}\right) x_{j}=x \cdot A^{T}(y) .
$$

b) Let us first the following general observations, that we will also use later. Suppose $z \in \mathbb{R}^{n}$ an element with the property

$$
x \cdot z=0 \text { for all } x \in \mathbb{R}^{n} .
$$

Then $z=0$. Indeed for $x=z$ we then have $|z|^{2}=z \cdot z=0$, so $z=0$.
Now suppose B is an $m \times n$ matrix such that

$$
A x \cdot y=x \cdot B y
$$

for all $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$. By a) This implies that

$$
x \cdot B y=x \cdot A^{T} y
$$

for all $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, which can also be written as

$$
x \cdot\left(B y-A^{T} y\right)
$$

for all $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$. Fix $y \in \mathbb{R}^{n}$ and let $z=B y-A^{T} y$. Then $x \cdot z=0$ for all $x \in \mathbb{R}^{m}$. By the observation above it follows that $z=0$ i.e. $B y=A^{T} y$. Since this is true for any $y \in \mathbb{R}^{n}$ it follows that $B=A^{T}$.
2. Suppose A is an $n \times n$ matrix. Prove that the following conditions are equivalent:

1) A is orthogonal i.e. $A^{T} A=I=A A^{T}$.
2) A preserves standard inner product in \mathbb{R}^{n} i.e.

$$
A x \cdot A y=x \cdot y
$$

for all $x, y \in \mathbb{R}^{n}$.
3) A preserves standard norm in \mathbb{R}^{n} i.e.

$$
|A x|=|x|
$$

for all $x \in \mathbb{R}^{n}$. (Recall that $|x|=\sqrt{x \cdot x}$).
Also prove that if A is orthogonal, then $\operatorname{det} A= \pm 1$.
Solution: Suppose A is an arbitrary $n \times n$ matrix. Then by exercise 1)

$$
A x \cdot A y=x \cdot A^{T} A y
$$

for all $x, y \in \mathbb{R}^{n}$. In particular

$$
A x \cdot A y=x \cdot y
$$

for all $x, y \in \mathbb{R}^{n}$ if and only if

$$
x \cdot A^{T} A y=x \cdot y
$$

for all $x, y \in \mathbb{R}^{n}$. This is true if and only if

$$
x \cdot\left(A^{T} A y-y\right)
$$

for all $x, y \in \mathbb{R}^{n}$. By the observations made above this is equivalent to $A^{T} A y-y=0$ for all $y \in \mathbb{R}^{n}$, which in turn is equivalent to $A^{T} A=I$.
Hence we have proved that the condition 2) is equivalent to condition $A^{T} A=$ I. On the other hand in Linear Algebra it is proved that for square matrices A, B condition $A B=I$ implies $B A=I$ (for dimensional reasons). Hence condition 1) is equivalent to condition $A^{T} A=I$. We have shown the equivalences of conditions 1) and 2).

Let us prove that 2) and 3) are equivalent. Suppose A preserves inner product. Then for every $x \in \mathbb{R}^{n}$ we have

$$
|A x|^{2}=A x \cdot A x=x \cdot x=|x|^{2}
$$

so $|A x|=|x|$, since both are non-negative real numbers. Conversely suppose A preserves norms. Then

$$
A x \cdot A x=x \cdot x
$$

for all $x \in \mathbb{R}^{n}$. Apply this to the vector $x+y$, to obtain

$$
A x \cdot A x+2 A x \cdot A y+A y \cdot A y=A(x+y) \cdot A(x+y)=(x+y) \cdot(x+y)=x \cdot x+2 x \cdot y+y \cdot y
$$

Since $A x \cdot A x=x \cdot x$ and $A y \cdot A y=y \cdot y$, these cancel out, to leave us with

$$
\begin{gathered}
2 A x \cdot A y=2 x \cdot y, \text { i.e. } \\
A x \cdot A y=x \cdot y
\end{gathered}
$$

Suppose A is orthogonal. Then $A^{T} A=I$, and using properties of integral we get

$$
(\operatorname{det} A)^{2}=\operatorname{det} A \operatorname{det} A=\operatorname{det} A^{T} \operatorname{det} A=\operatorname{det}\left(A^{T} A\right)=\operatorname{det} I=1 .
$$

Hence $\operatorname{det} A= \pm 1$.
3. a) Prove that

$$
O(n)=\left\{A \in M(n \times n, \mathbb{R}) \mid A^{T} A=I=A A^{T}\right\}
$$

considered as a subgroup of $G L(n, \mathbb{R})$ is a compact topological group (Hint: a subset of \mathbb{R}^{m} is compact if and only if it is closed and bounded).
b) We have proved in the lectures that

$$
S L(n)=\{A \in M(n \times n, \mathbb{R}) \mid \operatorname{det} A=1\}
$$

is a closed subgroup of $G L(n, \mathbb{R})$. Is it compact?
Solution: a) Since $O(n)$ is a subspace of $M(n ; \mathbb{R})$, which is homeomorphic to Euclidean space $\mathbb{R}^{n^{2}}$, it is enough to show $O(n)$ is closed and bounded in $M(n ; \mathbb{R})$.
Consider the mapping $\phi: M(n ; \mathbb{R}) \rightarrow M(n ; \mathbb{R})$ defined by $\phi(A)=A^{T} A$. This mapping is clearly continuous, since taking transpose and multiplication of matrices are continuous operations. $>$ We have

$$
O(n)=\phi^{-1}(\{I\})
$$

Since singleton $\{I\}$ is closed in $M(n ; \mathbb{R}), O(n)$ is closed in $M(n ; \mathbb{R})$.
By the previous exercise orthogonal matrix A preserves norm, so in particular $\left|A e_{j}\right|=1$, where e_{j} is the j-th vector in the standard orthonormal basis of \mathbb{R}^{n}. But the coordinates of $A e_{j}$ are exactly the entries $a_{i j}$ on the j-th column of A. Hence

$$
\left|A e_{j}\right|^{2}=\sum_{i=1}^{n} a_{i j}^{2} \leq 1
$$

which implies that $\left|a_{i j}\right| \leq 1$. This works for any pair of indices i, j. Hence $O(n)$ is bounded subset of $M(n ; \mathbb{R}) \approx \mathbb{R}^{n^{2}}$.
b) If $n=1 S L(1 ; \mathbb{R})=\{1\}$ is certainly compact.

Suppose $n \geq 2$. Recall that $n \times n$-matrix A is called diagonal matrix, if all its entries outside diagonal are zero. In other words $A=\left(a_{i j}\right)$ is diagonal if and only if $a_{i j}=0$ whenever $i \neq j$. It is known from the linear algebra that for a diagonal matrix A we have

$$
\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}
$$

Now let $>0 a$ be an arbitrary positive real number A be a diagonal $n \times n$-matrix with $a_{11}=a, a_{22}=1 / a, a_{i i}=1$ for $i>2$. Then $\operatorname{det} A=1$, so $A \in S L(n ; \mathbb{R})$. Also the Euclidean norm of A (thought of as an element of $\mathbb{R}^{n^{2}}$) is at least a.

Hence $S L(n ; \mathbb{R})$ is not bounded in $\mathbb{R}^{n^{2}}$, so in particular it cannot be compact).
Hence $S L(n ; \mathbb{R})$ is compact if and only if $n=1$.
4. Suppose H is a closed subgroup of $(\mathbb{R},+), H \neq \mathbb{R}$. Prove that there exists $a \in \mathbb{R}$ such that $H=a \mathbb{Z}$, hence H is discrete and isomorphic to \mathbb{Z}. (Hint: prove that $a=\min (H \cap\{x \in \mathbb{R} \mid x>0\})$ exists.)
Conclude that every non-trivial subgroup of $(\mathbb{R},+)$ is either discrete group isomorphic to \mathbb{Z} or dense in \mathbb{R}.
Solution: If $H=\{0\}$ is trivial, we clearly have $H=0 \mathbb{Z}$. Suppose H is not trivial. 'Consider the set

$$
A=H \cap\{x \in \mathbb{R} \mid x>0\}
$$

If H is non-trivial, then H contains an element $h \neq 0$. Since H is a group, it also contains $-h$. One of the numbers h or $-h$ are strictly positive. Hence A is non-empty. It is clearly bounded from below, so

$$
a=\inf A
$$

exists and $a \geq 0$. Suppose $a=0$. Then (by the definition of infimum) A, hence also H, contains a sequence $\left(h_{n}\right)_{n \in \mathbb{N}}$, where $h_{n} \in A$ (i.e. $h_{n}>0$ for all $n \in \mathbb{N}$) and

$$
\lim _{n \rightarrow \infty} h_{n}=0
$$

Suppose $x \in \mathbb{R}$ is arbitrary. Fix $n \in \mathbb{N}$. Then there exists (unique) integer $m \in \mathbb{Z}$ such that

$$
\begin{aligned}
& m \leq\left(x / h_{n}<m+1\right. \text { i.e. } \\
& m h_{n} \leq x<(m+1) h_{n}
\end{aligned}
$$

This implies that

$$
0 \leq x-m h_{n}<h_{n}
$$

hence

$$
\left|x-m h_{n}\right|<h_{n} \rightarrow 0, \text { when } n \rightarrow \infty .
$$

Since H is a group and $m \in \mathbb{Z}, m h_{n} \in H$. We see that we can find an element of H arbitrary close to x. This means that $x \in \bar{H}=H$, since H is closed. We have thus shown that if $a=0, H=\mathbb{R}$. This contradicts the assumptions.

Hence $a>0$. Since H is closed $a \in H$, in other words

$$
a=\min H \cap\{x \in \mathbb{R} \mid x>0\} .
$$

Since H is group it certainly then contains a subgroup $a \mathbb{Z}$ generated by a. Let us show conversely that $H \subset a \mathbb{Z}$.
Suppose $h \in H, h>0$. Then there exists (unique) integer $n \in \mathbb{N}$ such that

$$
n a \leq h<(n+1) a
$$

Then $0 \leq h-n a<a$. Since H is a group $h-n a \in H$. Now if $h-n a>0$, then $h-n a$ is a positive element of H, which is smaller than a, which contradicts the definition of a. Hence $h-n a=0$, i.e. $h=n a$. If $h<0,-h>0$, so $-h \in a \mathbb{Z}$ and hence $h \in a \mathbb{Z}$. Certainly $0 \in a \mathbb{Z}$. Thus $H=a \mathbb{Z}$.

Finally let H be an arbitrary non-trivial subgroup of \mathbb{R}. Then \bar{H} is nontrivial closed subgroup of G (Lemma 2.2). Thus either $\bar{H}=\mathbb{R}$, in which case H is dense in \mathbb{R} or $\bar{H}=a \mathbb{Z}$ for some $a>0$. Now $a \mathbb{Z}$ is discrete, so its only dense subset is \bar{H} itself, hence $H=\bar{H}=a \mathbb{Z}$.
5. Suppose α is an irrational number. Prove that the set

$$
\{n+m \alpha \mid n, m \in \mathbb{Z}\}
$$

is dense in \mathbb{R}.
Solution: The set $H=\{n+m \alpha \mid n, m \in \mathbb{Z}\}$ is a subgroup of \mathbb{R}, so by the previous exercise either H is dense in \mathbb{R} or there exists $c \in \mathbb{R}$ such that $H=c \mathbb{Z}$. Let us show that the second option leads to contradiction.
Now $1, \alpha \in H$, so there exist $n_{1}, n_{2} \in \mathbb{Z}$ such that $1=n_{1} c, \alpha=n_{2} c$. Then we have

$$
\alpha=\alpha / 1=\frac{n_{2} c}{n_{1} c}=\frac{n_{2}}{n_{1}} \in \mathbb{Q} .
$$

This contradicts the assumption.
Remark: In the similar fashion one can show the following.
Suppose $a, b \in \mathbb{R}$. Then the set $a \mathbb{Z}+b \mathbb{Z}$ is dense in \mathbb{R} if and only if a and b are independent over integers, i.e. $n a+m b=0$ if and only if $n=m=0$.
6. Suppose H is a normal (in algebraic sence) subgroup of a topological group G. Prove that \bar{H} is also normal.
(Reminder: subgroup H is normal if $x H=H x$ for all $x \in G$.)
Solution: Fix $x \in G$ and consider the mapping $f: G \rightarrow G, f(g)=x g x^{-1}$. This mapping is continuous and $f(H)=x H x^{-1} \subset H$, since H is normal. From the properties of continuous mappings it follows that

$$
f(\bar{H}) \subset \overline{f(H)} \subset \bar{H}
$$

Hence $x \bar{H} x^{-1} \subset \bar{H}$. This is true for every $x \in G$. Hence \bar{H} is normal.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, 60\%-4 points, $75 \%-5$ points.

