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1. Suppose A = (aij) is a real n × m matrix. Recall that its transpose AT is
de�ned as an m × n matrix with (AT )ij = aji. Also recall that the standard
inner product · in Rn is de�ned by

x · y =
n∑

i=1

xiyi,

x, y ∈ Rn.
a) Suppose A is an n×m matrix as above. Prove that

Ax · y = x · ATy

for all x ∈ Rm, y ∈ Rn.
b) Prove that the equation above characterises AT uniquely, i.e. if B is an
m× n matrix such that

Ax · y = x ·By

for all x ∈ Rm, y ∈ Rn, then B = AT .

Solution: a) If A is n × m matrix and x = (x1, . . . , xm) ∈ Rm, then Ax =
(y1, . . . yn) ∈ Rn, where

yi =
m∑
j=1

aijxj.

Hence it follows also that ATy = (z1, . . . , zm), where

zj =
n∑

i=1

aijyi.

Now

Ax · y =
n∑

i=1

(Ax)iyi =
n∑

i=1

(
m∑
j=1

aijxj)yi =
m∑
j=1

(
n∑

i=1

aijyi)xj = x · AT (y).

b) Let us �rst the following general observations, that we will also use later.
Suppose z ∈ Rn an element with the property

x · z = 0 for all x ∈ Rn.

Then z = 0. Indeed for x = z we then have |z|2 = z · z = 0, so z = 0.

Now suppose B is an m× n matrix such that

Ax · y = x ·By

for all x ∈ Rm, y ∈ Rn. By a) This implies that

x ·By = x · ATy
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for all x ∈ Rm, y ∈ Rn, which can also be written as

x · (By − ATy)

for all x ∈ Rm, y ∈ Rn. Fix y ∈ Rn and let z = By −ATy. Then x · z = 0 for
all x ∈ Rm. By the observation above it follows that z = 0 i.e. By = ATy.
Since this is true for any y ∈ Rn it follows that B = AT .

2. Suppose A is an n× n matrix. Prove that the following conditions are equi-
valent:
1) A is orthogonal i.e. ATA = I = AAT .
2) A preserves standard inner product in Rn i.e.

Ax · Ay = x · y
for all x, y ∈ Rn.
3) A preserves standard norm in Rn i.e.

|Ax| = |x|
for all x ∈ Rn. (Recall that |x| =

√
x · x).

Also prove that if A is orthogonal, then detA = ±1.

Solution: Suppose A is an arbitrary n× n matrix. Then by exercise 1)

Ax · Ay = x · ATAy

for all x, y ∈ Rn. In particular

Ax · Ay = x · y
for all x, y ∈ Rn if and only if

x · ATAy = x · y
for all x, y ∈ Rn. This is true if and only if

x · (ATAy − y)

for all x, y ∈ Rn. By the observations made above this is equivalent to
ATAy − y = 0 for all y ∈ Rn, which in turn is equivalent to ATA = I.
Hence we have proved that the condition 2) is equivalent to condition ATA =
I. On the other hand in Linear Algebra it is proved that for square matrices
A,B condition AB = I implies BA = I (for dimensional reasons). Hence
condition 1) is equivalent to condition ATA = I. We have shown the equiva-
lences of conditions 1) and 2).

Let us prove that 2) and 3) are equivalent. Suppose A preserves inner
product. Then for every x ∈ Rn we have

|Ax|2 = Ax · Ax = x · x = |x|2,
so |Ax| = |x|, since both are non-negative real numbers. Conversely suppose
A preserves norms. Then

Ax · Ax = x · x
for all x ∈ Rn. Apply this to the vector x+ y, to obtain

Ax·Ax+2Ax·Ay+Ay·Ay = A(x+y)·A(x+y) = (x+y)·(x+y) = x·x+2x·y+y·y.
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Since Ax · Ax = x · x and Ay · Ay = y · y, these cancel out, to leave us with

2Ax · Ay = 2x · y, i.e.

Ax · Ay = x · y.
Suppose A is orthogonal. Then ATA = I, and using properties of integral

we get

(detA)2 = detA detA = detAT detA = det(ATA) = det I = 1.

Hence detA = ±1.

3. a) Prove that

O(n) = {A ∈ M(n× n,R) | ATA = I = AAT}
considered as a subgroup of GL(n,R) is a compact topological group (Hint:
a subset of Rm is compact if and only if it is closed and bounded).
b) We have proved in the lectures that

SL(n) = {A ∈ M(n× n,R) | detA = 1}
is a closed subgroup of GL(n,R). Is it compact?

Solution: a)Since O(n) is a subspace of M(n;R), which is homeomorphic
to Euclidean space Rn2

, it is enough to show O(n) is closed and bounded in
M(n;R).
Consider the mapping ϕ : M(n;R) → M(n;R) de�ned by ϕ(A) = ATA. This
mapping is clearly continuous, since taking transpose and multiplication of
matrices are continuous operations. >We have

O(n) = ϕ−1({I}).
Since singleton {I} is closed in M(n;R), O(n) is closed in M(n;R).

By the previous exercise orthogonal matrix A preserves norm, so in par-
ticular |Aej| = 1, where ej is the j-th vector in the standard orthonormal
basis of Rn. But the coordinates of Aej are exactly the entries aij on the j-th
column of A. Hence

|Aej|2 =
n∑

i=1

a2ij ≤ 1,

which implies that |aij| ≤ 1. This works for any pair of indices i, j. Hence

O(n) is bounded subset of M(n;R) ≈ Rn2
.

b) If n = 1 SL(1;R) = {1} is certainly compact.
Suppose n ≥ 2. Recall that n × n-matrix A is called diagonal matrix, if all
its entries outside diagonal are zero. In other words A = (aij) is diagonal if
and only if aij = 0 whenever i ̸= j. It is known from the linear algebra that
for a diagonal matrix A we have

detA = a11a22 . . . ann.

Now let> 0a be an arbitrary positive real numberA be a diagonal n×n-matrix
with a11 = a, a22 = 1/a, aii = 1 for i > 2. Then detA = 1, so A ∈ SL(n;R).
Also the Euclidean norm of A (thought of as an element of Rn2

) is at least a.
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Hence SL(n;R) is not bounded in Rn2
, so in particular it cannot be compact).

Hence SL(n;R) is compact if and only if n = 1.

4. Suppose H is a closed subgroup of (R,+), H ̸= R. Prove that there exists
a ∈ R such that H = aZ, hence H is discrete and isomorphic to Z. (Hint:
prove that a = min(H ∩ {x ∈ R | x > 0}) exists.)
Conclude that every non-trivial subgroup of (R,+) is either discrete group
isomorphic to Z or dense in R.
Solution: If H = {0} is trivial, we clearly have H = 0Z. Suppose H is not
trivial. 'Consider the set

A = H ∩ {x ∈ R | x > 0}.
If H is non-trivial, then H contains an element h ̸= 0. Since H is a group, it
also contains −h. One of the numbers h or −h are strictly positive. Hence A
is non-empty. It is clearly bounded from below, so

a = inf A

exists and a ≥ 0. Suppose a = 0. Then (by the de�nition of in�mum) A,
hence also H, contains a sequence (hn)n∈N, where hn ∈ A (i.e. hn > 0 for all
n ∈ N) and

lim
n→∞

hn = 0.

Suppose x ∈ R is arbitrary. Fix n ∈ N. Then there exists (unique) integer
m ∈ Z such that

m ≤ (x/hn < m+ 1i.e.

mhn ≤ x < (m+ 1)hn.

This implies that

0 ≤ x−mhn < hn,

hence

|x−mhn| < hn → 0, when n → ∞.

Since H is a group and m ∈ Z, mhn ∈ H. We see that we can �nd an element
of H arbitrary close to x. This means that x ∈ H = H, since H is closed. We
have thus shown that if a = 0, H = R. This contradicts the assumptions.

Hence a > 0. Since H is closed a ∈ H, in other words

a = minH ∩ {x ∈ R | x > 0}.
Since H is group it certainly then contains a subgroup aZ generated by a.
Let us show conversely that H ⊂ aZ.
Suppose h ∈ H, h > 0. Then there exists (unique) integer n ∈ N such that

na ≤ h < (n+ 1)a.

Then 0 ≤ h − na < a. Since H is a group h − na ∈ H. Now if h − na > 0,
then h− na is a positive element of H, which is smaller than a, which cont-
radicts the de�nition of a. Hence h − na = 0, i.e. h = na. If h < 0, −h > 0,
so −h ∈ aZ and hence h ∈ aZ. Certainly 0 ∈ aZ. Thus H = aZ.
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Finally let H be an arbitrary non-trivial subgroup of R. Then H is non-
trivial closed subgroup of G (Lemma 2.2). Thus either H = R, in which case
H is dense in R or H = aZ for some a > 0. Now aZ is discrete, so its only
dense subset is H itself, hence H = H = aZ.

5. Suppose α is an irrational number. Prove that the set

{n+mα | n,m ∈ Z}
is dense in R.
Solution: The set H = {n + mα | n,m ∈ Z} is a subgroup of R, so by
the previous exercise either H is dense in R or there exists c ∈ R such that
H = cZ. Let us show that the second option leads to contradiction.
Now 1, α ∈ H, so there exist n1, n2 ∈ Z such that 1 = n1c, α = n2c. Then we
have

α = α/1 =
n2c

n1c
=

n2

n1

∈ Q.

This contradicts the assumption.

Remark: In the similar fashion one can show the following.
Suppose a, b ∈ R. Then the set aZ + bZ is dense in R if and only if a and b
are independent over integers, i.e. na+mb = 0 if and only if n = m = 0.

6. Suppose H is a normal (in algebraic sence) subgroup of a topological group
G. Prove that H is also normal.
(Reminder: subgroup H is normal if xH = Hx for all x ∈ G.)

Solution: Fix x ∈ G and consider the mapping f : G → G, f(g) = xgx−1.
This mapping is continuous and f(H) = xHx−1 ⊂ H, since H is normal.
From the properties of continuous mappings it follows that

f(H) ⊂ f(H) ⊂ H.

Hence xHx−1 ⊂ H. This is true for every x ∈ G. Hence H is normal.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


