Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 2 Solutions

1. Suppose $A = (a_{ij})$ is a real $n \times m$ matrix. Recall that its **transpose** A^T is defined as an $m \times n$ matrix with $(A^T)_{ij} = a_{ji}$. Also recall that the standard inner product \cdot in \mathbb{R}^n is defined by

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

 $x, y \in \mathbb{R}^n$.

a) Suppose A is an $n \times m$ matrix as above. Prove that

$$Ax \cdot y = x \cdot A^T y$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$.

b) Prove that the equation above characterises A^T uniquely, i.e. if B is an $m \times n$ matrix such that

$$Ax \cdot y = x \cdot By$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, then $B = A^T$.

Solution: a) If A is $n \times m$ matrix and $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, then $Ax = (y_1, \ldots, y_n) \in \mathbb{R}^n$, where

$$y_i = \sum_{j=1}^m a_{ij} x_j.$$

Hence it follows also that $A^T y = (z_1, \ldots, z_m)$, where

$$z_j = \sum_{i=1}^n a_{ij} y_i.$$

Now

$$Ax \cdot y = \sum_{i=1}^{n} (Ax)_{i} y_{i} = \sum_{i=1}^{n} (\sum_{j=1}^{m} a_{ij} x_{j}) y_{i} = \sum_{j=1}^{m} (\sum_{i=1}^{n} a_{ij} y_{i}) x_{j} = x \cdot A^{T}(y).$$

b) Let us first the following general observations, that we will also use later. Suppose $z \in \mathbb{R}^n$ an element with the property

 $x \cdot z = 0$ for all $x \in \mathbb{R}^n$.

Then z = 0. Indeed for x = z we then have $|z|^2 = z \cdot z = 0$, so z = 0.

Now suppose B is an $m \times n$ matrix such that

$$Ax \cdot y = x \cdot By$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$. By a) This implies that

$$x \cdot By = x \cdot A^T y$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, which can also be written as

$$x \cdot (By - A^T y)$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$. Fix $y \in \mathbb{R}^n$ and let $z = By - A^T y$. Then $x \cdot z = 0$ for all $x \in \mathbb{R}^m$. By the observation above it follows that z = 0 i.e. $By = A^T y$. Since this is true for any $y \in \mathbb{R}^n$ it follows that $B = A^T$.

2. Suppose A is an $n \times n$ matrix. Prove that the following conditions are equivalent:

1) A is orthogonal i.e. $A^T A = I = A A^T$.

2) A preserves standard inner product in \mathbb{R}^n i.e.

$$Ax \cdot Ay = x \cdot y$$

for all $x, y \in \mathbb{R}^n$.

3) A preserves standard norm in \mathbb{R}^n i.e.

$$|Ax| = |x|$$

for all $x \in \mathbb{R}^n$. (Recall that $|x| = \sqrt{x \cdot x}$). Also prove that if A is orthogonal, then det $A = \pm 1$.

Solution: Suppose A is an arbitrary $n \times n$ matrix. Then by exercise 1)

$$Ax \cdot Ay = x \cdot A^T Ay$$

for all $x, y \in \mathbb{R}^n$. In particular

$$Ax \cdot Ay = x \cdot y$$

for all $x, y \in \mathbb{R}^n$ if and only if

 $x \cdot A^T A y = x \cdot y$

for all $x, y \in \mathbb{R}^n$. This is true if and only if

$$x \cdot (A^T A y - y)$$

for all $x, y \in \mathbb{R}^n$. By the observations made above this is equivalent to $A^T A y - y = 0$ for all $y \in \mathbb{R}^n$, which in turn is equivalent to $A^T A = I$. Hence we have proved that the condition 2) is equivalent to condition $A^T A = I$. I. On the other hand in Linear Algebra it is proved that for square matrices A, B condition AB = I implies BA = I (for dimensional reasons). Hence condition 1) is equivalent to condition $A^T A = I$. We have shown the equivalences of conditions 1) and 2).

Let us prove that 2) and 3) are equivalent. Suppose A preserves inner product. Then for every $x \in \mathbb{R}^n$ we have

$$|Ax|^2 = Ax \cdot Ax = x \cdot x = |x|^2,$$

so |Ax| = |x|, since both are non-negative real numbers. Conversely suppose A preserves norms. Then

$$Ax \cdot Ax = x \cdot x$$

for all $x \in \mathbb{R}^n$. Apply this to the vector x + y, to obtain $Ax \cdot Ax + 2Ax \cdot Ay + Ay \cdot Ay = A(x+y) \cdot A(x+y) = (x+y) \cdot (x+y) = x \cdot x + 2x \cdot y + y \cdot y.$

 $\mathbf{2}$

Since $Ax \cdot Ax = x \cdot x$ and $Ay \cdot Ay = y \cdot y$, these cancel out, to leave us with

$$2Ax \cdot Ay = 2x \cdot y$$
, i.e.

$$Ax \cdot Ay = x \cdot y.$$

Suppose A is orthogonal. Then $A^T A = I$, and using properties of integral we get

$$(\det A)^2 = \det A \det A = \det A^T \det A = \det(A^T A) = \det I = 1.$$

Hence $\det A = \pm 1$.

3. a) Prove that

$$O(n) = \{A \in M(n \times n, \mathbb{R}) \mid A^T A = I = A A^T\}$$

considered as a subgroup of $GL(n, \mathbb{R})$ is a compact topological group (Hint: a subset of \mathbb{R}^m is compact if and only if it is closed and bounded). b) We have proved in the lectures that

$$SL(n) = \{A \in M(n \times n, \mathbb{R}) \mid \det A = 1\}$$

is a closed subgroup of $GL(n, \mathbb{R})$. Is it compact?

Solution: a)Since O(n) is a subspace of $M(n; \mathbb{R})$, which is homeomorphic to Euclidean space \mathbb{R}^{n^2} , it is enough to show O(n) is closed and bounded in $M(n; \mathbb{R})$.

Consider the mapping $\phi: M(n; \mathbb{R}) \to M(n; \mathbb{R})$ defined by $\phi(A) = A^T A$. This mapping is clearly continuous, since taking transpose and multiplication of matrices are continuous operations. >We have

$$O(n) = \phi^{-1}(\{I\}).$$

Since singleton $\{I\}$ is closed in $M(n; \mathbb{R})$, O(n) is closed in $M(n; \mathbb{R})$.

By the previous exercise orthogonal matrix A preserves norm, so in particular $|Ae_j| = 1$, where e_j is the *j*-th vector in the standard orthonormal basis of \mathbb{R}^n . But the coordinates of Ae_j are exactly the entries a_{ij} on the *j*-th column of A. Hence

$$|Ae_j|^2 = \sum_{i=1}^n a_{ij}^2 \le 1,$$

which implies that $|a_{ij}| \leq 1$. This works for any pair of indices i, j. Hence O(n) is bounded subset of $M(n; \mathbb{R}) \approx \mathbb{R}^{n^2}$.

b) If n = 1 $SL(1; \mathbb{R}) = \{1\}$ is certainly compact.

Suppose $n \ge 2$. Recall that $n \times n$ -matrix A is called diagonal matrix, if all its entries outside diagonal are zero. In other words $A = (a_{ij})$ is diagonal if and only if $a_{ij} = 0$ whenever $i \ne j$. It is known from the linear algebra that for a diagonal matrix A we have

$$\det A = a_{11}a_{22}\ldots a_{nn}.$$

Now let > 0*a* be an arbitrary positive real number *A* be a diagonal $n \times n$ -matrix with $a_{11} = a, a_{22} = 1/a, a_{ii} = 1$ for i > 2. Then det A = 1, so $A \in SL(n; \mathbb{R})$. Also the Euclidean norm of *A* (thought of as an element of \mathbb{R}^{n^2}) is at least *a*. Hence $SL(n; \mathbb{R})$ is not bounded in \mathbb{R}^{n^2} , so in particular it cannot be compact).

Hence $SL(n; \mathbb{R})$ is compact if and only if n = 1.

4. Suppose H is a closed subgroup of $(\mathbb{R}, +)$, $H \neq \mathbb{R}$. Prove that there exists $a \in \mathbb{R}$ such that $H = a\mathbb{Z}$, hence H is discrete and isomorphic to \mathbb{Z} . (Hint: prove that $a = \min(H \cap \{x \in \mathbb{R} \mid x > 0\})$ exists.)

Conclude that every non-trivial subgroup of $(\mathbb{R}, +)$ is either discrete group isomorphic to \mathbb{Z} or dense in \mathbb{R} .

Solution: If $H = \{0\}$ is trivial, we clearly have $H = 0\mathbb{Z}$. Suppose H is not trivial. 'Consider the set

$$A = H \cap \{ x \in \mathbb{R} \mid x > 0 \}.$$

If H is non-trivial, then H contains an element $h \neq 0$. Since H is a group, it also contains -h. One of the numbers h or -h are strictly positive. Hence A is non-empty. It is clearly bounded from below, so

$$a = \inf A$$

exists and $a \ge 0$. Suppose a = 0. Then (by the definition of infimum) A, hence also H, contains a sequence $(h_n)_{n\in\mathbb{N}}$, where $h_n \in A$ (i.e. $h_n > 0$ for all $n \in \mathbb{N}$) and

$$\lim_{n \to \infty} h_n = 0.$$

Suppose $x \in \mathbb{R}$ is arbitrary. Fix $n \in \mathbb{N}$. Then there exists (unique) integer $m \in \mathbb{Z}$ such that

$$m \le (x/h_n < m + 1$$
i.e.
 $mh_n \le x < (m + 1)h_n.$

This implies that

 $0 \le x - mh_n < h_n,$

hence

4

$$|x - mh_n| < h_n \to 0$$
, when $n \to \infty$.

Since H is a group and $m \in \mathbb{Z}$, $mh_n \in H$. We see that we can find an element of H arbitrary close to x. This means that $x \in \overline{H} = H$, since H is closed. We have thus shown that if a = 0, $H = \mathbb{R}$. This contradicts the assumptions.

Hence a > 0. Since H is closed $a \in H$, in other words

 $a = \min H \cap \{ x \in \mathbb{R} \mid x > 0 \}.$

Since H is group it certainly then contains a subgroup $a\mathbb{Z}$ generated by a. Let us show conversely that $H \subset a\mathbb{Z}$.

Suppose $h \in H, h > 0$. Then there exists (unique) integer $n \in \mathbb{N}$ such that

$$na \le h < (n+1)a.$$

Then $0 \le h - na < a$. Since H is a group $h - na \in H$. Now if h - na > 0, then h - na is a positive element of H, which is smaller than a, which contradicts the definition of a. Hence h - na = 0, i.e. h = na. If h < 0, -h > 0, so $-h \in a\mathbb{Z}$ and hence $h \in a\mathbb{Z}$. Certainly $0 \in a\mathbb{Z}$. Thus $H = a\mathbb{Z}$.

Finally let H be an arbitrary non-trivial subgroup of \mathbb{R} . Then \overline{H} is non-trivial closed subgroup of G (Lemma 2.2). Thus either $\overline{H} = \mathbb{R}$, in which case H is dense in \mathbb{R} or $\overline{H} = a\mathbb{Z}$ for some a > 0. Now $a\mathbb{Z}$ is discrete, so its only dense subset is \overline{H} itself, hence $H = \overline{H} = a\mathbb{Z}$.

5. Suppose α is an irrational number. Prove that the set

$$\{n + m\alpha \mid n, m \in \mathbb{Z}\}\$$

is dense in \mathbb{R} .

Solution: The set $H = \{n + m\alpha \mid n, m \in \mathbb{Z}\}$ is a subgroup of \mathbb{R} , so by the previous exercise either H is dense in \mathbb{R} or there exists $c \in \mathbb{R}$ such that $H = c\mathbb{Z}$. Let us show that the second option leads to contradiction. Now $1, \alpha \in H$, so there exist $n_1, n_2 \in \mathbb{Z}$ such that $1 = n_1 c, \alpha = n_2 c$. Then we have

$$\alpha = \alpha/1 = \frac{n_2 c}{n_1 c} = \frac{n_2}{n_1} \in \mathbb{Q}.$$

This contradicts the assumption.

Remark: In the similar fashion one can show the following. Suppose $a, b \in \mathbb{R}$. Then the set $a\mathbb{Z} + b\mathbb{Z}$ is dense in \mathbb{R} if and only if a and b are independent over integers, i.e. na + mb = 0 if and only if n = m = 0.

6. Suppose H is a normal (in algebraic sence) subgroup of a topological group G. Prove that \overline{H} is also normal. (Deminder subgroup H is normal if $\pi H = H\pi$ for all $\pi \in C$.)

(Reminder: subgroup H is normal if xH = Hx for all $x \in G$.)

Solution: Fix $x \in G$ and consider the mapping $f: G \to G$, $f(g) = xgx^{-1}$. This mapping is continuous and $f(H) = xHx^{-1} \subset H$, since H is normal. From the properties of continuous mappings it follows that

$$f(\overline{H}) \subset \overline{f(H)} \subset \overline{H}.$$

Hence $x\overline{H}x^{-1} \subset \overline{H}$. This is true for every $x \in G$. Hence \overline{H} is normal.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.