Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 2 30.01-03.02.2012

1. Suppose $A = (a_{ij})$ is a real $n \times m$ matrix. Recall that its **transpose** A^T is defined as an $m \times n$ matrix with $(A^T)_{ij} = a_{ji}$. Also recall that the standard inner product \cdot in \mathbb{R}^n is defined by

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$

 $x, y \in \mathbb{R}^n$.

a) Suppose A is an $n \times m$ matrix as above. Prove that

$$Ax \cdot y = x \cdot A^T y$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$.

b) Prove that the equation above characterises A^T uniquely, i.e. if B is an $m \times n$ matrix such that

$$Ax \cdot y = x \cdot By$$

for all $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, then $B = A^T$.

- 2. Suppose A is an $n \times n$ matrix. Prove that the following conditions are equivalent:
 - 1) A is orthogonal i.e. $A^T A = I = A A^T$.
 - 2) A preserves standard inner product in \mathbb{R}^n i.e.

$$Ax \cdot Ay = x \cdot y$$

for all $x, y \in \mathbb{R}^n$.

3) A preserves standard norm in \mathbb{R}^n i.e.

$$|Ax| = |x|$$

for all $x \in \mathbb{R}^n$. (Recall that $|x| = \sqrt{x \cdot x}$). Also prove that if A is orthogonal, then det $A = \pm 1$.

3. a) Prove that

$$O(n) = \{A \in M(n \times n, \mathbb{R}) \mid A^T A = I = A A^T\}$$

considered as a subgroup of $GL(n, \mathbb{R})$ is a compact topological group (Hint: a subset of \mathbb{R}^m is compact if and only if it is closed and bounded). b) We have proved in the lectures that

$$SL(n) = \{A \in M(n \times n, \mathbb{R}) \mid \det A = 1\}$$

is a closed subgroup of $GL(n, \mathbb{R})$. Is it compact?

- 4. Suppose H is a closed subgroup of (ℝ, +), H ≠ ℝ. Prove that there exists a ∈ ℝ such that H = aℤ, hence H is discrete and isomorphic to ℤ. (Hint: prove that a = min(H ∩ {x ∈ ℝ | x > 0}) exists.) Conclude that every subgroup of (ℝ, +) is either discrete group isomorphic to ℤ or dense in ℝ.
- 5. Suppose α is an irrational number. Prove that the set

$$\{n + m\alpha \mid n, m \in \mathbb{Z}\}\$$

is dense in \mathbb{R} .

6. Suppose H is a normal (in algebraic sence) subgroup of a topological group G. Prove that \overline{H} is also normal.

(Reminder: subgroup H is normal if xH = Hx for all $x \in G$.)

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.

 $\mathbf{2}$