Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 13 Solutions

Suppose X is a G-space and H is a closed subgroup of G. A subset S of X is called an H-kernel if there exists a G-mapping f: X → G/H such that S = f⁻¹(eH). Suppose S is an H-kernel in X. Prove the following:

 S is closed in X.
 S is H-equivariant.
 (S|S) = {g ∈ G | gS ∩ S ≠ Ø} = H.
 A G-mapping f': X → G/H such that S = f'⁻¹(eH) is unique.

Solution: i) Since H is closed, G/H is T_1 , so $\{eH\}$ is closed in G/H. Thus $S = f^{-1}(eH)$ is closed. ii) Suppose $h \in H, s \in S$. Then

$$f(hs) = hf(s) = heH = H,$$

so hs $inf^{-1}(eH) = S$. iii) By ii) $H \subset G(S|S)$. Conversely suppose $g \in G(S|S)$, i.e. $gs_1 = s_2$ for some $s_1, s_2 \in S$. Then

$$gH = gf(s_1) = f(gs_1) = f(s_2) = H,$$

so $g \in H$.

iv) Suppose f and f' both G-mappings $X \to G/H$ such that $S = f'^{-1}(eH)$. Suppose $x \in X$ and f(x) = gH, $g \in G$. Then $f(g^{-1}x) = H$, so $g^{-}x \in S$, hence

$$f'(x) = gf'(g^{-1}x) = gH = gf(g^{-1}x) = f(x).$$

2. Suppose X is a G-space, where G is compact, H a closed subgroup of G and $S \subset X$ is an H-kernel. Prove that the mapping $\alpha \colon G \underset{H}{\times} S \to X$, $\alpha[g, s] = gs$ is a G-homeomorphism.

Solution: Since G is compact the action mapping $\Phi: G \times X \to X$ is closed (Topological Transformation Groups I, Theorem 1.9). Since S is closed by the previous exercise, restriction $\Psi = \Phi | G \times S: G \times S \to X$ is also closed mapping.

Next we show that Ψ is surjection. Suppose $x \in X$ and let $g \in G$ be such that f(x) = gH. Then $f(g^{-1}x) = H$, i.e. $g^{-1}x \in S$. Hence $x = g(g^{-1}x) = \Psi(g, g^{-1}x)$. Hence Ψ is a surjection. Since it is also closed, we conclude that Ψ is a quotient mapping.

Suppose $\Psi(g,s) = gs = g's' = \Psi(g',s')$. Then $(g'^{-1}g)s = s'$ i.e. $g'^{-1}g = G(S|S)$, which equals H by the previous exercise. Hence $g'^{-1}g = h \in H$, so

$$(g', s') = (gh^{-1}, hs).$$

Conversely $\Psi(gh^{-1}, hs) = \Psi(g, s)$ for all $g \in G, h \in H, s \in S$. Thus we see that the quotient space mapping Ψ defines is precisely the induced space $G \times S$, hence the induced mapping is exactly $\alpha \colon G \times S \to X$, which is thus H a homeomorphism.

 Suppose X is a G-space, H a closed subgroup of G and S ⊂ X is an H-kernel. Denote by f: G → G/H a G-mapping such that f⁻¹(eH) = S. Suppose canonical projection π: G → G/H admits a local cross-section c: U → G, U ⊂ G/H. Define α: G × S → X, α[g,s] = gs as above and let β: f⁻¹(U) → G × S be defined by

$$\beta(x) = [c(f(x)), (cf(x))^{-1}x].$$

Show that β is an inverse of the restriction of α on the subset

$$\{[g,s] \mid gH \in U\} \subset G \underset{H}{\times} S.$$

Conclude that α is a *G*-homeomorphism.

Solution: α is a mapping induced by an inclusion $S \hookrightarrow X$ by the universal property of induced space, so it is well-defined and continuous *G*-mapping. β is well-defined, since $f((cf(x))^{-1}x) = (cf(x))^{-1}f(x) \in H$ by the basic properties of local cross-sections (see exercise 12.1), so $(cf(x))^{-1}x \in S$. Continuity of *S* is clear. Also we notice that β maps $f^{-1}(U)$ to the set $\{[g,s] \mid gH \in U\} \subset G \times S$, because if $f(x) \in U$, then $cf(x)H = \pi(c(f(x)) = f(x))$. Conversely if $gH \in U$, then $f(\alpha([g,s])) = f(gs) = gH \in U$, i.e. α maps $\{[g,s] \mid gH \in U\}$ to $f^{-1}U$. It remains to show that β and $\alpha |\{[g,s] \mid gH \in U\}$ are inverses of each other.

Suppose [g, s] is such that $gH \in U$. Then

$$\beta(\alpha([g,s]))) = \beta(gs) = [c(f(gs)), (cf(gs))^{-1}gs] = [c(g(f(s)), (c(g(f(s)))^{-1}gs)] = [c(gH), (cgH)^{-1}gs]$$

By the exercise 12.1 there exists $h \in H$ such that $gh^{-1} = c(gH)$, hence

$$[c(gH), (cgH)^{-1}gs] = [gh^{-1}, hg^{-1}gs] = [gh^{-1}, hs] = [g, s].$$

Suppose $x \in f^{-1}U$. Then

$$\alpha(\beta(x)) = \alpha[c(f(x)), (cf(x))^{-1}x] = c(f(x))(cf(x))^{-1}x = x.$$

4. Suppose X is a G-space and $S \subset X$ is an G_x -kernel for some $x \in S$. Prove that $[G_x] \ge [G_y]$ for every $y \in X$.

Solution: Suppose $y \in X$ and let $g \in G$ be such that $f(y) = gG_x$, where $f: X \to G/G_x$ is a *G*-equivariant mapping such that $S = f^{-1}(G_x)$ Since *f* is *G*-equivariant,

$$G_y \subset G_{f(y)} = gG_x g^{-1}.$$

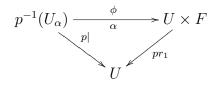
Hence G_y is conjugate to a subgroup of G_x , i.e. $[G_x] \ge [G_y]$.

5. Suppose X is a G-space, H a closed subgroup of G and $S \subset X$ is an H-kernel. Suppose canonical projection $\pi: G \to G/H$ admits a local cross-section $s: U \to G, U \subset G/H$.

Prove that inclusion $i: S \hookrightarrow X$ induces a homeomorphism $S/H \to X/G$.

Solution: By Proposition 2.9 in "Induced space and twisted products" lecture material $S/H \cong (G \times S)/G$. By the exercise 3 $G \times S \cong X$ as G-spaces, so $G \times S)/G \cong X/G$. Combining these two together yields the result.

6. Suppose X, E, F are topological spaces and $p: E \to X$ is a continuous mapping. We say that p is *locally trivial with fibre* F if there exists an open covering $(U_{\alpha})_{\alpha \in \mathcal{A}}$ of X and a homeomorphism $\phi_{\alpha}: p^{-1}U_{\alpha} \to U_{\alpha} \times F$ for every $\alpha \in \mathcal{A}$ such that the diagram



commutes.

a) Prove that p is an open mapping.

b) Suppose $\alpha, \beta \in \mathcal{A}$ and $x \in U_{\alpha} \cap U_{\beta}$. Prove that the transition function $\theta_{\beta\alpha}^x \colon F \to F$ defined by

$$\theta_{\beta\alpha}^x(f) = pr_2(\phi_\beta(\phi_\alpha^{-1}(x, f)))$$

is a well-defined homeomorphism.

c) Suppose $\alpha, \beta \in \mathcal{A}$ and $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Prove that

$$\phi_{\beta} \circ \phi_{\alpha}^{-1}(x, f) = (x, \theta_{\beta\alpha}^{x}(f))$$

for all $x \in U_{\alpha} \cap U_{\beta}, f \in F$.

Solution: a) Since $p^{-1}(U_{\alpha})$ consitute open covering of E, it is enough to show that $p|p^{-1}(U_{\alpha}) \to U_{\alpha}$ is open. But this mapping is a composition of a homeomorphism ϕ_{α} and a projection pr_1 , which is an open mapping.

b) Suppose $y = \phi_{\alpha}^{-1}(x, f) \in p^{-1}(U)$. Since $x = pr_1(\phi_{\alpha}(y)) = p(y)$, it follows that $y \in p^{-1}(x) \subset p^{-1}(U_{\beta})$. Hence $\phi_{\beta}(y) \in U_{\beta} \times F$ exists and $pr_2(\phi_{\beta}(y)) \in F$. Hence $\theta_{\beta\alpha}^x(f)$ is well-defined. It is obviously continuous. Moreover if we interchange α and β we see that $\theta_{\alpha\beta}^x$ exists and is a continuous inverse for $\theta_{\beta\alpha}^x$.

c) By b) it is enough to show that
$$pr_1(\phi_\beta \circ \phi_\alpha^{-1}(x, f)) = x$$
. But
 $pr_1(\phi_\beta \circ \phi_\alpha^{-1}(x, f)) = p(\phi_\alpha^{-1}(x, f)) = pr_1(x, f) = x.$

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.