Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 13 30.04-04.05.2012

- Suppose X is a G-space and H is a closed subgroup of G. A subset S of X is called an H-kernel if there exists a G-mapping f: X → G/H such that S = f⁻¹(eH). Suppose S is an H-kernel in X. Prove the following:

 S is closed in X.
 S is H-equivariant.
 (S|S) = {g ∈ G | gS ∩ S ≠ Ø} = H.
 A G-mapping f': X → G/H such that S = f'⁻¹(eH) is unique.
- 2. Suppose X is a G-space, where G is compact, H a closed subgroup of G and $S \subset X$ is an H-kernel. Prove that the mapping $\alpha \colon G \underset{H}{\times} S \to X$, $\alpha[g, s] = gs$ is a G-homeomorphism.
- Suppose X is a G-space, H a closed subgroup of G and S ⊂ X is an H-kernel. Denote by f: G → G/H a G-mapping such that f⁻¹(eH) = S. Suppose canonical projection π: G → G/H admits a local cross-section s: U → G, U ⊂ G/H. Define α: G × S → X, α[g,s] = gs as above and let β: f⁻¹(U) → G × S be defined by

$$\beta(x) = [s(f(x)), (sf(x))^{-1}x].$$

Show that β is an inverse of the restriction of α on the subset

$$\{[g,s] \mid gH \in U\} \subset G \underset{H}{\times} S.$$

Conclude that α is a *G*-homeomorphism.

- 4. Suppose X is a G-space, H a closed subgroup of G, $S \subset X$ is an G_x -kernel for some $x \in S$. Prove that $[G_x] \ge [G_y]$ for every $y \in X$.
- 5. Suppose X is a G-space, H a closed subgroup of G and S ⊂ X is an H-kernel. Suppose canonical projection π: G → G/H admits a local cross-section s: U → G, U ⊂ G/H.
 Prove that inclusion i: S ↔ X induces a homeomorphism S/H → X/G.
- 6. Suppose X, E, F are topological spaces and $p: E \to X$ is a mapping. We say that p is *locally trivial with fibre* F if there exists an open covering $(U_{\alpha})_{\alpha \in \mathcal{A}}$ of X and a homeomorphism $\phi_{\alpha}: p^{-1}U_{\alpha} \to U_{\alpha} \times F$ for every $\alpha \in \mathcal{A}$ such that

the diagram

commutes.

a) Prove that p is a continuous and open mapping. b) Suppose $\alpha, \beta \in \mathcal{A}$ and $x \in U_{\alpha} \cap U_{\beta}$. Prove that the *transition function* $\theta_{\beta\alpha}^{x} \colon F \to F$ defined by

$$\theta^x_{\beta\alpha}(f) = pr_2(\phi_\beta(\phi_\alpha^{-1}(x, f)))$$

is a well-defined homeomorphism.

c) Suppose $\alpha, \beta \in \mathcal{A}$ and $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Prove that

$$\phi_{\beta} \circ \phi_{\alpha}^{-1}(x, f) = (x, \theta_{\beta\alpha}^{x}(f))$$

for all $x \in U_{\alpha} \cap U_{\beta}, f \in F$.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.