Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 13
30.04-04.05.2012

1. Suppose X is a G-space and H is a closed subgroup of G. A subset S of X is called an H-kernel if there exists a G-mapping $f: X \rightarrow G / H$ such that $S=f^{-1}(e H)$. Suppose S is an H-kernel in X. Prove the following:
i) S is closed in X.
ii) S is H-equivariant.
iii) $(S \mid S)=\{g \in G \mid g S \cap S \neq \emptyset\}=H$.
iv) A G-mapping $f^{\prime}: X \rightarrow G / H$ such that $S=f^{\prime-1}(e H)$ is unique.
2. Suppose X is a G-space, where G is compact, H a closed subgroup of G and $S \subset X$ is an H-kernel. Prove that the mapping $\alpha: G \underset{H}{\times} S \rightarrow X, \alpha[g, s]=g s$ is a G-homeomorphism.
3. Suppose X is a G-space, H a closed subgroup of G and $S \subset X$ is an H-kernel. Denote by $f: G \rightarrow G / H$ a G-mapping such that $f^{-1}(e H)=S$.
Suppose canonical projection $\pi: G \rightarrow G / H$ admits a local cross-section $s: U \rightarrow G, U \subset G / H$. Define $\alpha: G \underset{H}{\times} S \rightarrow X, \alpha[g, s]=g s$ as above and let $\beta: f^{-1}(U) \rightarrow G \underset{H}{\times} S$ be defined by

$$
\beta(x)=\left[s(f(x)),(s f(x))^{-1} x\right] .
$$

Show that β is an inverse of the restriction of α on the subset

$$
\{[g, s] \mid g H \in U\} \subset G \underset{H}{\times} S .
$$

Conclude that α is a G-homeomorphism.
4. Suppose X is a G-space, H a closed subgroup of $G, S \subset X$ is an G_{x}-kernel for some $x \in S$. Prove that $\left[G_{x}\right] \geq\left[G_{y}\right]$ for every $y \in X$.
5. Suppose X is a G-space, H a closed subgroup of G and $S \subset X$ is an H kernel. Suppose canonical projection $\pi: G \rightarrow G / H$ admits a local crosssection $s: U \rightarrow G, U \subset G / H$.
Prove that inclusion $i: S \hookrightarrow X$ induces a homeomorphism $S / H \rightarrow X / G$.
6. Suppose X, E, F are topological spaces and $p: E \rightarrow X$ is a mapping. We say that p is locally trivial with fibre F if there exists an open covering $\left(U_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of X and a homeomorphism $\phi_{\alpha}: p^{-1} U_{\alpha} \rightarrow U_{\alpha} \times F$ for every $\alpha \in \mathcal{A}$ such that
the diagram

commutes.
a) Prove that p is a continuous and open mapping.
b) Suppose $\alpha, \beta \in \mathcal{A}$ and $x \in U_{\alpha} \cap U_{\beta}$. Prove that the transition function $\theta_{\beta \alpha}^{x}: F \rightarrow F$ defined by

$$
\theta_{\beta \alpha}^{x}(f)=\operatorname{pr}_{2}\left(\phi_{\beta}\left(\phi_{\alpha}^{-1}(x, f)\right)\right)
$$

is a well-defined homeomorphism.
c) Suppose $\alpha, \beta \in \mathcal{A}$ and $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Prove that

$$
\phi_{\beta} \circ \phi_{\alpha}^{-1}(x, f)=\left(x, \theta_{\beta \alpha}^{x}(f)\right)
$$

for all $x \in U_{\alpha} \cap U_{\beta}, f \in F$.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

