Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 12
Solutions

1. Suppose G is a topological group and H closed subgroup of G. A local cross-section of canonical projection $\pi: G \rightarrow G / H$ is a continuous mapping $s: U \rightarrow G$ defined on some open non-empty subset U of G / H such that $\pi(s(x))=x$ for all $x \in U$.

If there exists at least one local cross-section of $\pi: G \rightarrow G / H$ we say that canonical projection π admits local cross-section.
a) Suppose $\pi: G \rightarrow G / H$ admits local cross-section. Prove that every point $x \in G / H$ has an open neighbourhood U such that there exists local cross section $s: U \rightarrow G$ of π.
b) Suppose $s: U \rightarrow G$ is a local cross-section of π, where U is open subset of G / H. Suppose $g \in \pi^{-1}(U)$ and let $g^{\prime}=s(\pi(g))$. Prove that $g H=g^{\prime} H$.
c) Suppose $\pi: G \rightarrow G / H$ admits local cross-section. Let $g \in G$. Prove that there exists a local cross section $s: U \rightarrow G$ of π such that $g \in \pi^{-1} U$ and $s(g H)=g$.

Solution: a) Suppose V is a non-empty open subset of G / H such that there exists a local cross-section $t: V \rightarrow G$. Suppose $x \in G / H$. Then there exists $g \in G$ such that $g x \in V$ (since $V \neq \emptyset$ and G / H has only one G-orbit). The set $g^{-1} V=U$ is then a neighbourhood of x and we can define a mapping $s: U \rightarrow G$ by the formula

$$
s(y)=g^{-1} s(g y) .
$$

Mapping s is evidently continuous and

$$
\pi(s(y))=\pi\left(g^{-1} s(g y)\right)=g^{-1} \pi(s(g y))=g^{-1}(g y)=y
$$

for all $y \in U$.
b) Since s is a cross-section

$$
g^{\prime} H=\pi\left(g^{\prime}\right)=\pi s(\pi(g))=\pi(g)=g H .
$$

c) By a) there exists a local cross-section $s^{\prime}: U \rightarrow G$ defined on a neighbourhood U of $\pi(g)=g H$. Let $g^{\prime}=s^{\prime}(g H)$, then by b) $g^{\prime} H=g H$, i.e. $g^{\prime-1} g \in H$. Now define $s: U \rightarrow G$ by the formula

$$
s(y)=s^{\prime}(y) g^{\prime-1} g .
$$

Then s is continuous, $s(g H)=s^{\prime}(g H) g^{\prime-1} g=g^{\prime}\left(g^{\prime-1} g\right)=g$ and

$$
\pi(s(y))=s^{\prime}(y)\left(g^{\prime-1} g\right) H=s^{\prime}(y) H=\pi(s(y))=y .
$$

2. Suppose G is a topological group, H is its closed subgroups and suppose projection $\pi: G \rightarrow G / H$ admits local cross-section. Suppose X is an H-space and let $p: G \times X \rightarrow G / H, p([g, x])=g H$.
Let $s: U \rightarrow G$ be a local cross section of π.
Define $\phi: p^{-1} U \rightarrow U \times X, \phi([g, x])=\left(g H,\left(s(g H)^{-1} g\right) x\right), \psi: U \times X \rightarrow p^{-1} U$, $\psi(g H, x)=[s(g H), x]$. Prove that ϕ and ψ are well-defined continuous G mappings and inverses of each other (hence G-homeomorphisms) and the diagram

commutes.
Solution: First we check that ϕ is well-defined. First of all by the exercise 1b) $\left(s(g H)^{-1} g\right) \in H$ for all $g \in \pi^{-1} U$, so $\left(s(g H)^{-1} g\right) x$ makes sense for all $x \in X$ (which is only H-space!).

Let $q: G \times X \rightarrow G \times X$ be the canonical projection and let $V=q^{-1} p(U)$, which is open in $G \times{ }_{\times}^{H} X$. The restriction of the quotient mapping π to $\pi \mid V: V \rightarrow p^{-1} U$ is a quotient mapping - we leave it to the reader to verify. Hence it is enough to notice that ϕ is induced by a continuous mapping $V \rightarrow(G / G H) \times X$ defined by the formula $(g, x) \mapsto\left(g H,\left(s(g H)^{-1} g\right) x\right.$. This mapping is obviously continuous, so it remains to check that it factors through $\underset{H}{\times X}$. To see this we take $h \in H$ and notice that

$$
\left(g h^{-1}, h x\right) \mapsto\left(g h^{-1} H,\left(s\left(g h^{-1} H\right)^{-1} g h^{-1}\right) h x=\left(g H,\left(s(g H)^{-1} g\right) .\right.\right.
$$

Next we check that the diagram commutes. This is a straightforward computation:

$$
p r_{1} \phi([g, x])=p r_{1}\left(g H,\left(s(g H)^{-1} g\right) x\right)=g H=p([g, x]) .
$$

This also shows that $\phi([g, x]) \in U \times X$, when $g H \in U$, so the range of ϕ is indeed $U \times X$.

Next we have to handle ψ. We let $W=\pi^{-1} U$ and consider the mapping $W \times X \rightarrow \underset{H}{G \times X}$ defined by $(g, x) \mapsto[s(g H), x]$. This is obviously continuous. Moreover when $g H=g^{\prime} H(g, x)$ and $\left(g^{\prime}, x\right)$ map to the same element. Hence we can quotient out and obtain a mapping $\psi: U \times X \rightarrow \underset{H}{G}$. This mapping will be continuous, since factorization mapping $\pi \times$ id is open and surjective, hence a quotient mapping.
Finally we see that $p(\psi(g H, x))=p([s(g H), x])=s(g H) H=g H \in U$, so the range of ψ does lie entirely in $p^{-1} U$.
It remains to show that ϕ and ψ are inverses of each other.

$$
\begin{gathered}
\phi(\psi(g H, x))=\phi([s(g H), x])=\left(s(g H) H,\left(s(g H)^{-1} s(g H)\right) x\right)=(g H, x), \\
\psi(\phi([g, x]))=\psi\left(g H,\left(s(g H)^{-1} g\right) x\right)=\left[s(g H),\left(s(g H)^{-1} g\right) x\right]=[g, x],
\end{gathered}
$$

since $s(g H)=g h$ for some $h \in H$ (exercise 1), so

$$
\left[s(g H),\left(s(g H)^{-1} g\right) x\right]=\left[g h, h^{-1} x\right]=[g, x]
$$

by the definition of the twisted product.
3. Suppose canonical projection $\pi: G \rightarrow G / H$ admits local cross-section. Suppose X is an H-space. Prove that canonical injection $i: X \rightarrow \underset{H}{G \times} X, i(x)=[e, x]$ is an embedding. (Hint: choose suitable local cross section and use the previous exercise.)
Solution: By the proposition 1 we can assume that cross-section $s: U \rightarrow G$ is defined on the open neighbourhood U of $e H$ and $s(e H)=e$.
By the previous exercise there is an embedding $\psi: U \times X \rightarrow G \times \underset{H}{X} X$ defined by $\psi(g H, x)=[s(g H), x]$. The restriction of ψ on $e H \times X$ is precisely i.
4. Suppose G is a topological group, H its closed subgroup and X is a G-space. Prove that the mapping $f: G \underset{H}{\times} X \rightarrow G / H \times X$ defined by

$$
f([g, x])=(g H, g x)
$$

is a G-homeomorphism. Here G acts on $G / H \times X$ componentwise, $g \cdot\left(g^{\prime} H, x\right)=$ ($g g^{\prime} H, g x$).

Solution: Let us first check that f is well-defined. Suppose $h \in H$. Then

$$
f\left(\left[g h^{-1}, h x\right]\right)=\left(g h^{-1} H, g h^{-1} h x\right)=(g H, g x)=f([g, x]) .
$$

Mapping f is clearly continuous. Let us define an inverse candidate for f, mapping $f^{\prime}: G / H \times X \rightarrow G \underset{H}{\times}$, by formula

$$
f^{\prime}(g H, x)=\left[g, g^{-1} x\right] .
$$

f^{\prime} is well-defined, since for any $h \in H$, if $g^{\prime}=g h$, then

$$
f^{\prime}\left(g^{\prime} H, x\right)=\left[g h, h^{-1} g^{-1} x\right]=\left[g, g^{-1} x\right]=f(g H, x) .
$$

The fact that f^{\prime} is continuous is seen as usual. The fact that f is G-equivariant is easily seen.
It remains to show that f^{\prime} is an inverse for f. This is a straightforward calculation:

$$
\begin{gathered}
f^{\prime}(f([g, x]))=f^{\prime}(g H, g x)=\left[g, g^{-1} g x\right]=[g, x], \\
f\left(f^{\prime}(g H, x)\right)=f\left(\left[g, g^{-1} x\right]\right)=\left(g H, g\left(g^{-1} x\right)\right)=(g H, x) .
\end{gathered}
$$

5. Suppose X, Y, Z are G-spaces, $f: X \rightarrow Z, g: Y \rightarrow Z G$-equivariant continuous mappings. Define

$$
X \underset{Z}{X} Y=\{(x, y) \in X \times Y \mid f(x)=g(y)\} \subset X \times Y .
$$

The space $X \times Y$ is called the pull-back of the pair (f, g). Restrictions of projections $X^{Z} \times Y \rightarrow X$ and $X \times Y \rightarrow Y$ defines continuous mappings $g^{\prime}: X \underset{Z}{X} Y \rightarrow X$ and $f^{\prime}: X \underset{Z}{X} Y \rightarrow Y$.
i) Prove that $X \underset{Z}{\times} Y$ is G-invariant subset of $X \times Y$, which has componentwise G-action, $g \cdot(x, y)=(g x, g y)$ and mappings f^{\prime}, g^{\prime} are G-equivariant.
ii) Prove that $g \circ f^{\prime}=g^{\prime} \circ f$ i.e. the diagram

commutes.
iii) The push-out is universal with respect to such diagrams i.e. if W is a G-space, $\alpha: W \rightarrow X, \beta: W \rightarrow Y$ are G-equivariant mappings such that $g \circ \beta=\alpha \circ f$, then there exist unique G-equivariant mapping $h: W \rightarrow X \underset{Z}{X} Y$ such that $f^{\prime} \circ h=\beta, g^{\prime} \circ h=\alpha$.
This is illustrated in the diagram below.
W

Solution: i) Suppose $h \in G$ and $(x, y) \in \underset{Z}{X} Y$. Then

$$
f(h x)=h f(x)=h g(y)=g(h y),
$$

so $h \cdot(x, y)=(h x, h y) \in X \underset{Z}{\times} Y$. Mapping f^{\prime} is G-equivariant:

$$
f^{\prime}(h(x, y))=f^{\prime}(h x, h y)=h y=h f^{\prime}(x, y) .
$$

The proof that g^{\prime} is G-map is similar.
ii)

$$
\left(g \circ f^{\prime}\right)(x, y)=g(y)=f(x)=\left(g^{\prime} \circ f\right)(x, y) .
$$

iii)Suppose W is a G-space, $\alpha: W \rightarrow X, \beta: W \rightarrow Y$ are G-equivariant mappings such that $g \circ \beta=\alpha \circ f$. Suppose $h: W \rightarrow X \times Y$ is such that $f^{\prime} \circ h=\beta, g^{\prime} \circ h=\alpha$. Then $h(w)=(a, b) \in \underset{Z}{\times} \subset X \times Y$, where

$$
\begin{gathered}
a=p r_{1} h(w)=g^{\prime}(h(w))=\alpha(w) \text { and } \\
b=p r_{2} h(w)=f^{\prime}(h(w))=\beta(w) .
\end{gathered}
$$

Hence we see that $h(w)=(\alpha(w), \beta(w))$ is uniquely determined. Conversely if we define h by this formula, h is clearly continuous G-mapping $W \rightarrow X \times Y$, so it only remains to show that the values of h lie in the subset $X \underset{Z}{\times} Y$. But this follows precisely from the condition $g \circ \beta=\alpha \circ f$.
6. Here $X, Y, Z, X \times Y, f, g, f^{\prime}, g^{\prime}$ are as in the exercise 5. above. Prove the following claims.
i) If f is surjective, f^{\prime} is also surjective.
ii) If f is injective, f^{\prime} is also injective.
iii) If f is open, f^{\prime} is open.

Solution: i) Suppose f is surjective. Let $y \in Y$. Since f is surjection, there exists $x \in X$ such that $f(x)=g(y)$. Now the pair (x, y) belongs to $X \underset{Z}{ } \times$ and $f^{\prime}(x, y)=y$.
ii) Suppose f is an injection. Suppose $f^{\prime}(x, y)=y=y^{\prime}=f^{\prime}\left(x,^{\prime}, y^{\prime}\right.$. Then $y=y^{\prime}$. But since $(x, y),\left(x^{\prime}, y\right) \in \underset{Z}{\times} Y$,

$$
f(x)=g(y)=f\left(x^{\prime}\right)
$$

By the injectivity of f this implies that $x=x^{\prime}$. Hence $(x, y)=\left(x^{\prime}, y^{\prime}\right)$.
iii) Suppose f is open. Let $W \subset X \underset{Z}{\times} Y$ be open. We need to prove that $f^{\prime}(W)$ is open in Y. Since W is open in the relative topology, there exists V open in $X \times Y$ such that $W=V \cap(X \underset{Z}{\times} Y)$.
Suppose $y \in f^{\prime}(W)$, then there exists $x \in X$ such that $(x, y) \in W$. Then $f(x)=g(y)$ and $(x, y) \in V$, hence there exists neighbourhood U, U^{\prime} of x and y in X and Y respectively such that $U \times U^{\prime} \subset V$.
By assumption $U^{\prime \prime}=U^{\prime} \cap g^{-1} f(U)$ is a neighbourhood of y in Y. Enough to show that $U^{\prime \prime} \subset f^{\prime}(W)$. Suppose $y^{\prime} \in U^{\prime} \cap g^{-1} f(U)$. Then $y^{\prime} \in U^{\prime}$ and $g(y)=f\left(x^{\prime}\right)$ for some $x^{\prime} \in U$. We see that $\left(x^{\prime}, y^{\prime}\right) \in\left(U \times U^{\prime}\right) \cap X \underset{Z}{X} Y \subset W$ and $f^{\prime}\left(x^{\prime}, y^{\prime}\right)=y^{\prime}$. Thus $U^{\prime \prime} \subset f^{\prime}(W)$.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

