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1. Suppose G is a topological group and H closed subgroup of G. A local
cross-section of canonical projection π : G → G/H is a continuous mapping
s : U → G de�ned on some open non-empty subset U of G/H such that
π(s(x)) = x for all x ∈ U .

If there exists at least one local cross-section of π : G → G/H we say that
canonical projection π admits local cross-section.

a) Suppose π : G→ G/H admits local cross-section. Prove that every point
x ∈ G/H has an open neighbourhood U such that there exists local cross sec-
tion s : U → G of π.

b) Suppose s : U → G is a local cross-section of π, where U is open subset
of G/H. Suppose g ∈ π−1(U) and let g′ = s(π(g)). Prove that gH = g′H.

c) Suppose π : G→ G/H admits local cross-section. Let g ∈ G. Prove that
there exists a local cross section s : U → G of π such that g ∈ π−1U and
s(gH) = g.

Solution: a) Suppose V is a non-empty open subset of G/H such that there
exists a local cross-section t : V → G. Suppose x ∈ G/H. Then there exists
g ∈ G such that gx ∈ V (since V ̸= ∅ and G/H has only one G-orbit). The
set g−1V = U is then a neighbourhood of x and we can de�ne a mapping
s : U → G by the formula

s(y) = g−1s(gy).

Mapping s is evidently continuous and

π(s(y)) = π(g−1s(gy)) = g−1π(s(gy)) = g−1(gy) = y

for all y ∈ U .

b) Since s is a cross-section

g′H = π(g′) = πs(π(g)) = π(g) = gH.

c) By a) there exists a local cross-section s′ : U → G de�ned on a neigh-
bourhood U of π(g) = gH. Let g′ = s′(gH), then by b) g′H = gH, i.e.
g′−1g ∈ H. Now de�ne s : U → G by the formula

s(y) = s′(y)g′−1g.

Then s is continuous, s(gH) = s′(gH)g′−1g = g′(g′−1g) = g and

π(s(y)) = s′(y)(g′−1g)H = s′(y)H = π(s(y)) = y.
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2. Suppose G is a topological group, H is its closed subgroups and suppose
projection π : G→ G/H admits local cross-section. Suppose X is an H-space
and let p : G×

H
X → G/H, p([g, x]) = gH.

Let s : U → G be a local cross section of π.
De�ne ϕ : p−1U → U ×X, ϕ([g, x]) = (gH, (s(gH)−1g)x), ψ : U ×X → p−1U ,
ψ(gH, x) = [s(gH), x]. Prove that ϕ and ψ are well-de�ned continuous G-
mappings and inverses of each other (hence G-homeomorphisms) and the
diagram

p−1(U)
ϕ //

p

##F
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FF

FF
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pr1
||xx
xx
xx
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x

U

commutes.

Solution: First we check that ϕ is well-de�ned. First of all by the exercise
1b) (s(gH)−1g) ∈ H for all g ∈ π−1U , so (s(gH)−1g)x makes sense for all
x ∈ X (which is only H-space!).

Let q : G×X → G×
H
X be the canonical projection and let V = q−1p(U),

which is open in G × X. The restriction of the quotient mapping π to
π|V : V → p−1U is a quotient mapping - we leave it to the reader to ve-
rify. Hence it is enough to notice that ϕ is induced by a continuous mapping
V → (G/GH) ×X de�ned by the formula (g, x) 7→ (gH, (s(gH)−1g)x. This
mapping is obviously continuous, so it remains to check that it factors th-
rough ×

H
X. To see this we take h ∈ H and notice that

(gh−1, hx) 7→ (gh−1H, (s(gh−1H)−1gh−1)hx = (gH, (s(gH)−1g).

Next we check that the diagram commutes. This is a straightforward com-
putation:

pr1ϕ([g, x]) = pr1(gH, (s(gH)−1g)x) = gH = p([g, x]).

This also shows that ϕ([g, x]) ∈ U × X, when gH ∈ U , so the range of ϕ is
indeed U ×X.

Next we have to handle ψ. We let W = π−1U and consider the mapping
W×X → G×

H
X de�ned by (g, x) 7→ [s(gH), x]. This is obviously continuous.

Moreover when gH = g′H (g, x) and (g′, x) map to the same element. Hence
we can quotient out and obtain a mapping ψ : U×X → G×

H
X. This mapping

will be continuous, since factorization mapping π× id is open and surjective,
hence a quotient mapping.
Finally we see that p(ψ(gH, x)) = p([s(gH), x]) = s(gH)H = gH ∈ U , so the
range of ψ does lie entirely in p−1U .
It remains to show that ϕ and ψ are inverses of each other.

ϕ(ψ(gH, x)) = ϕ([s(gH), x]) = (s(gH)H, (s(gH)−1s(gH))x) = (gH, x),

ψ(ϕ([g, x])) = ψ(gH, (s(gH)−1g)x) = [s(gH), (s(gH)−1g)x] = [g, x],
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since s(gH) = gh for some h ∈ H (exercise 1), so

[s(gH), (s(gH)−1g)x] = [gh, h−1x] = [g, x]

by the de�nition of the twisted product.

3. Suppose canonical projection π : G→ G/H admits local cross-section. Suppo-
seX is anH-space. Prove that canonical injection i : X → G×

H
X, i(x) = [e, x]

is an embedding. (Hint: choose suitable local cross section and use the pre-
vious exercise.)

Solution: By the proposition 1 we can assume that cross-section s : U → G
is de�ned on the open neighbourhood U of eH and s(eH) = e.
By the previous exercise there is an embedding ψ : U ×X → G×

H
X de�ned

by ψ(gH, x) = [s(gH), x]. The restriction of ψ on eH ×X is precisely i.

4. Suppose G is a topological group, H its closed subgroup and X is a G-space.
Prove that the mapping f : G×

H
X → G/H ×X de�ned by

f([g, x]) = (gH, gx)

is aG-homeomorphism. HereG acts onG/H×X componentwise, g·(g′H, x) =
(gg′H, gx).

Solution: Let us �rst check that f is well-de�ned. Suppose h ∈ H. Then

f([gh−1, hx]) = (gh−1H, gh−1hx) = (gH, gx) = f([g, x]).

Mapping f is clearly continuous. Let us de�ne an inverse candidate for f ,
mapping f ′ : G/H ×X → G×

H
X, by formula

f ′(gH, x) = [g, g−1x].

f ′ is well-de�ned, since for any h ∈ H, if g′ = gh, then

f ′(g′H, x) = [gh, h−1g−1x] = [g, g−1x] = f(gH, x).

The fact that f ′ is continuous is seen as usual. The fact that f is G-equivariant
is easily seen.
It remains to show that f ′ is an inverse for f . This is a straightforward
calculation:

f ′(f([g, x])) = f ′(gH, gx) = [g, g−1gx] = [g, x],

f(f ′(gH, x)) = f([g, g−1x]) = (gH, g(g−1x)) = (gH, x).

5. Suppose X,Y, Z are G-spaces, f : X → Z, g : Y → Z G-equivariant continuo-
us mappings. De�ne

X ×
Z
Y = {(x, y) ∈ X × Y | f(x) = g(y)} ⊂ X × Y.

The space X ×
Z
Y is called the pull-back of the pair (f, g). Restrictions of

projections X × Y → X and X × Y → Y de�nes continuous mappings
g′ : X ×

Z
Y → X and f ′ : X ×

Z
Y → Y .
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i) Prove that X ×
Z
Y is G-invariant subset of X × Y , which has compo-

nentwise G-action, g · (x, y) = (gx, gy) and mappings f ′, g′ are G-equivariant.

ii) Prove that g ◦ f ′ = g′ ◦ f i.e. the diagram

X ×
Z
Y

g′

��

f ′
// Y

g

��
X

f // Z
commutes.

iii) The push-out is universal with respect to such diagrams i.e. if W is
a G-space, α : W → X, β : W → Y are G-equivariant mappings such that
g ◦β = α ◦ f , then there exist unique G-equivariant mapping h : W → X×

Z
Y

such that f ′ ◦ h = β, g′ ◦ h = α.
This is illustrated in the diagram below.

W
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X ×
Z
Y

g′

��

f ′
// Y

g

��
X

f // Z

Solution: i) Suppose h ∈ G and (x, y) ∈ X ×
Z
Y . Then

f(hx) = hf(x) = hg(y) = g(hy),

so h · (x, y) = (hx, hy) ∈ X ×
Z
Y . Mapping f ′ is G-equivariant:

f ′(h(x, y)) = f ′(hx, hy) = hy = hf ′(x, y).

The proof that g′ is G-map is similar.

ii)
(g ◦ f ′)(x, y) = g(y) = f(x) = (g′ ◦ f)(x, y).

iii)Suppose W is a G-space, α : W → X, β : W → Y are G-equivariant
mappings such that g ◦ β = α ◦ f . Suppose h : W → X ×

Z
Y is such that

f ′ ◦ h = β, g′ ◦ h = α. Then h(w) = (a, b) ∈ X×
Z
⊂ X × Y , where

a = pr1h(w) = g′(h(w)) = α(w) and

b = pr2h(w) = f ′(h(w)) = β(w).

Hence we see that h(w) = (α(w), β(w)) is uniquely determined. Conversely if
we de�ne h by this formula, h is clearly continuous G-mapping W → X ×Y ,
so it only remains to show that the values of h lie in the subset X ×

Z
Y . But

this follows precisely from the condition g ◦ β = α ◦ f .
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6. Here X, Y, Z,X ×
Z
Y, f, g, f ′, g′ are as in the exercise 5. above. Prove the fol-

lowing claims.
i) If f is surjective, f ′ is also surjective.
ii) If f is injective, f ′ is also injective.
iii) If f is open, f ′ is open.

Solution: i) Suppose f is surjective. Let y ∈ Y . Since f is surjection, there
exists x ∈ X such that f(x) = g(y). Now the pair (x, y) belongs to X ×

Z
Y

and f ′(x, y) = y.

ii) Suppose f is an injection. Suppose f ′(x, y) = y = y′ = f ′(x,′ , y′. Then
y = y′. But since (x, y), (x′, y) ∈ X ×

Z
Y ,

f(x) = g(y) = f(x′).

By the injectivity of f this implies that x = x′. Hence (x, y) = (x′, y′).

iii) Suppose f is open. Let W ⊂ X ×
Z
Y be open. We need to prove that

f ′(W ) is open in Y . Since W is open in the relative topology, there exists V
open in X × Y such that W = V ∩ (X ×

Z
Y ).

Suppose y ∈ f ′(W ), then there exists x ∈ X such that (x, y) ∈ W . Then
f(x) = g(y) and (x, y) ∈ V , hence there exists neighbourhood U,U ′ of x and
y in X and Y respectively such that U × U ′ ⊂ V .
By assumption U ′′ = U ′ ∩ g−1f(U) is a neighbourhood of y in Y . Enough
to show that U ′′ ⊂ f ′(W ). Suppose y′ ∈ U ′ ∩ g−1f(U). Then y′ ∈ U ′ and
g(y) = f(x′) for some x′ ∈ U . We see that (x′, y′) ∈ (U × U ′) ∩X ×

Z
Y ⊂ W

and f ′(x′, y′) = y′. Thus U ′′ ⊂ f ′(W ).

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


