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Exercise 12

Solutions

1. Suppose G is a topological group and H closed subgroup of G. A local
cross-section of canonical projection 7: G — G/H is a continuous mapping
s: U — G defined on some open non-empty subset U of G/H such that
m(s(z)) =z for all x € U.

If there exists at least one local cross-section of w: G — G/H we say that
canonical projection m admits local cross-section.

a) Suppose m: G — G/H admits local cross-section. Prove that every point
x € G/H has an open neighbourhood U such that there exists local cross sec-
tion s: U — G of .

b) Suppose s: U — G is a local cross-section of 7, where U is open subset
of G/H. Suppose g € 7= 1(U) and let ¢’ = s(w(g)). Prove that gH = ¢'H.

¢) Suppose 7: G — G/H admits local cross-section. Let g € G. Prove that
there exists a local cross section s: U — G of 7 such that ¢ € 7#—'U and

s(gH) = g.

Solution: a) Suppose V' is a non-empty open subset of G/H such that there
exists a local cross-section ¢: V' — G. Suppose x € G/H. Then there exists
g € G such that gz € V (since V # () and G/H has only one G-orbit). The
set g~V = U is then a neighbourhood of x and we can define a mapping
s: U — G by the formula

s(y) = g~ 's(gy)-
Mapping s is evidently continuous and
m(s(y)) = (97 s(9y)) = g 'm(s(gy)) = g ' (9y) =y
forally e U.

b) Since s is a cross-section

gH =n(g) =ms(x(g)) = m(g) = gH.
¢) By a) there exists a local cross-section s’: U — G defined on a neigh-
bourhood U of w(g) = gH. Let ¢ = s'(¢gH), then by b) ¢H = gH, i.e.
¢ 'g € H. Now define s: U — G by the formula
s(y)=5(y)gg.
Then s is continuous, s(¢H) = s'(¢H)g' g = ¢'(¢"'g) = g and

m(s(y)) = s'(y) (g 9)H = §'(y)H = 7(s(y)) = y.
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2. Suppose G is a topological group, H is its closed subgroups and suppose

projection 7: G — G/H admits local cross-section. Suppose X is an H-space
and let p: G x X — G/H, p(lg,z]) = gH.
H

Let s: U — G be a local cross section of .

Define ¢: p~'U — U x X, ¢([g, 2]) = (¢H, (s(gH) 'g)x), ¥: Ux X — p~'U,
V(gH,z) = [s(gH),z]. Prove that ¢ and ¢ are well-defined continuous G-
mappings and inverses of each other (hence G-homeomorphisms) and the
diagram

¢

p 1(U) UxX

N

Solution: First we check that ¢ is well-defined. First of all by the exercise
1b) (s(gH) 'g) € H for all g € 77U, so (s(¢H)'g)xr makes sense for all
x € X (which is only H-space!).

comiutes.

Let ¢: G x X — G x X be the canonical projection and let V = ¢~ 1p(U),
H

which is open in G x X. The restriction of the quotient mapping 7 to
7|V:V — p7lU is a quotient mapping - we leave it to the reader to ve-
rify. Hence it is enough to notice that ¢ is induced by a continuous mapping
V — (G/GH) x X defined by the formula (g, ) — (gH, (s(gH) *g)z. This
mapping is obviously continuous, so it remains to check that it factors th-
rough I>§X. To see this we take h € H and notice that

(gh™' hx) = (gh™'H, (s(gh™"H) 'gh™ " ha = (gH, (s(gH)'g).

Next we check that the diagram commutes. This is a straightforward com-
putation:

pr1o(lg, x]) = pri(gH, (s(gH) ' g)z) = gH = p([g, ]).

This also shows that ¢([g,z]) € U x X, when gH € U, so the range of ¢ is
indeed U x X.

Next we have to handle v). We let W = 7~!U and consider the mapping
Wx X — Gx X defined by (g,z) — [s(gH),z]. This is obviously continuous.
H

Moreover when gH = ¢'H (g, x) and (¢’, ) map to the same element. Hence
we can quotient out and obtain a mapping ¢: U x X — G x X. This mapping
H

will be continuous, since factorization mapping 7 X id is open and surjective,
hence a quotient mapping.

Finally we see that p(¢(gH, z)) = p([s(gH),x]) = s(¢gH)H = gH € U, so the
range of ¢ does lie entirely in p~1U.

It remains to show that ¢ and v are inverses of each other.

$((gH, x)) = ¢([s(gH), z]) = (s(¢H)H, (s(gH)'s(gH))z) = (9H, ),

W(o(lg,x])) = Y(gH, (s(gH) " g)x) = [s(gH ), (s(¢H) " g)x] = [g, ],



since s(gH) = gh for some h € H (exercise 1), so

[s(gH), (s(gH) " g)z] = [gh,h™'x] = [g, 2]
by the definition of the twisted product.

. Suppose canonical projection 7: G — G/H admits local cross-section. Suppo-
se X is an H-space. Prove that canonical injection i: X — Gx X, i(z) = [e, z]
H

is an embedding. (Hint: choose suitable local cross section and use the pre-
vious exercise.)

Solution: By the proposition 1 we can assume that cross-section s: U — G

is defined on the open neighbourhood U of eH and s(eH) = e.

By the previous exercise there is an embedding ¢: U x X — G x X defined
H

by ¥(gH,x) = [s(gH), z]. The restriction of ¢ on eH x X is precisely i.

. Suppose G is a topological group, H its closed subgroup and X is a G-space.
Prove that the mapping f: G x X — G/H x X defined by
H

flg,2]) = (9H, gx)
is a G-homeomorphism. Here G acts on G/ H x X componentwise, g-(¢'H, x) =
(99'H, gz).
Solution: Let us first check that f is well-defined. Suppose h € H. Then
f(lgh™, ha]) = (gh™"H,gh™'hx) = (¢H, gz) = f([g, 2]).

Mapping f is clearly continuous. Let us define an inverse candidate for f,
mapping f': G/H x X — G x X, by formula
H

f(gH,z) =[g,9 .
f' is well-defined, since for any h € H, if ¢ = gh, then
f'(g'H,x) = [gh,h™ g™ 2] = 9,97 2] = f(gH, x).

The fact that f’ is continuous is seen as usual. The fact that f is G-equivariant
is easily seen.

It remains to show that f’ is an inverse for f. This is a straightforward
calculation:

F'(f(lg.2]) = f'(9H, gx) = [g9,9 ' g2] = [g, ],

f(f'(gH,2)) = f(lg,97"'a]) = (9H, g(9™"2)) = (9H, ).
. Suppose X, Y, Z are G-spaces, f: X — Z,g: Y — Z G-equivariant continuo-

us mappings. Define

XXV ={(z,y) e X xYV | fz) = g(y)} C X xY.

The space X x Y is called the pull-back of the pair (f,g). Restrictions of
z

projections X x Y — X and X x Y — Y defines continuous mappings
Jg: XxY —=>Xand f: X xY =Y.
z z



i) Prove that X x Y is G-invariant subset of X x Y, which has compo-
z

nentwise G-action, g+ (z,y) = (g2, gy) and mappings f’, ¢’ are G-equivariant.

ii) Prove that go f' = ¢’ o f i.e. the diagram

Xxyl oy
z
o
x—t .z
commutes.

iii) The push-out is universal with respect to such diagrams i.e. if W is

a G-space, a: W — X, g: W — Y are G-equivariant mappings such that

go S = ao f, then there exist unique G-equivariant mapping h: W — X xY
z

such that ffoh =0, ¢ oh = .
This is illustrated in the diagram below.

X xY Y
a Z
g g
X ! Z

Solution: i) Suppose h € G and (x,y) € X x Y. Then
zZ

f(hz) = hf(z) = hg(y) = g(hy),
so h- (z,y) = (hz,hy) € X i, Y. Mapping f’ is G-equivariant:

f'(h(z,y)) = f'(hx, hy) = hy = hf'(z,y).
The proof that ¢’ is G-map is similar.
i)
(g0 f)x.y) =g(y) = f(z) = (g o f)z,y).

iii)Suppose W is a G-space, a: W — X, f: W — Y are G-equivariant
mappings such that g o 8 = a o f. Suppose h: W — X X Y is such that

Z
floh=0,4¢ oh=a. Then h(w) = (a,b) € Xx C X XY, where
z

a = prih(w) = ¢ (h(w)) = a(w) and
b = prah(w) = f'(h(w)) = B(w).

Hence we see that h(w) = (a(w), f(w)) is uniquely determined. Conversely if

we define h by this formula, A is clearly continuous G-mapping W — X x Y|
so it only remains to show that the values of h lie in the subset X X Y . But
Z

this follows precisely from the condition go =« o f.
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6. Here X,Y, Z, X XY, f,g,f', ¢ are as in the exercise 5. above. Prove the fol-
Z

lowing claims.

i) If f is surjective, f’ is also surjective.
ii) If f is injective, f’ is also injective.
iii) If f is open, f’ is open.

Solution: i) Suppose f is surjective. Let y € Y. Since f is surjection, there
exists x € X such that f(z) = g(y). Now the pair (z,y) belongs to X x Y
Z

and f'(z,y) =v.

ii) Suppose f is an injection. Suppose f'(z,y) =y =y = f'(x,,y’. Then
y = y'. But since (z,y), (z',y) € X XY,
z

fl@) =gly) = f(@).
By the injectivity of f this implies that x = 2. Hence (z,y) = (2, /).

iii) Suppose f is open. Let W C X x Y be open. We need to prove that
Z

/(W) is open in Y. Since W is open in the relative topology, there exists V'
open in X X Y such that W=V N (X xY).
Z

Suppose y € f'(W), then there exists x € X such that (x,y) € W. Then
f(z) = g(y) and (x,y) € V, hence there exists neighbourhood U, U’ of x and
y in X and Y respectively such that U x U' C V.

By assumption U” = U’ N g~ 'f(U) is a neighbourhood of y in Y. Enough
to show that U” C f'(W). Suppose v € U' N g ' f(U). Then 3y € U’ and
g(y) = f(2') for some 2’ € U. We see that (z/,y") € (U x U )NX x YW

and f'(2’,y') =y'. Thus U" C f'(W).

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



