
Matematiikan ja tilastotieteen laitosTransformation GroupsSpring 2012Exerise 11Solutions1. R ats on R
2 by

t · (x, y) = (x+ t, y).Prove that R2 is a Palais proper R-spae with this ation.Solution: Suppose (x, y) ∈ R
2 and let U be any bounded neighbourhood of

(x, y). We laim that U is small. Suppose (z, u) ∈ R
2 any element and let Vbe a bounded neighbourhood of (z, u). Suppose t ∈ R(U |V ), then there exists

(a, b) ∈ V, (c, d) ∈ U suh that
(a + t, b) = t(a, b) = (c, d)i.e. b = d, a + t = c. Sine U and V are bounded, there exists a onstant

C > 0 suh that |a|, |c| ≤ C. Triangle inequality then implies, that
|t| = |(t+ a)− a| ≤ |t− a|+ |a| = |c|+ |a| ≤ 2C.Hene R(U |V ) is a bounded subset of R, so its losure is ompat.Hene U is small and spae is Palais proper.2. Suppose G is a ompat group, denote V = Map(G,R) and de�ne 〈, 〉 : V ×

V → R by the formula
〈f, g〉 =

∫

G

fg.a) Prove that 〈, 〉 is an inner produt in V .We denote the norm indued by this inner produt by ‖ ·‖2. In other words
‖f‖2 =

(
∫

G

f 2

)

1/2 for all f ∈ V.We also denote
‖f‖1 =

∫

G

|f | for all f ∈ V.b) Reall that in every inner produt so-alled Shwartz inequality
|〈a, b〉| ≤ |a||b|holds (you don't have to prove this). Here | · | on the left is the absolute valueof real number and on the right - norm in V indued by 〈, 〉.Use Shwartz inequality to show that for every f ∈ Map(G,R)

‖f‖1 ≤ ‖f‖2.) Denote by ‖ · ‖∞ sup-norm in V , i.e.
‖f‖∞ = sup{|f(g)| | g ∈ G}.



2 Prove that ‖f‖2 ≤ ‖f‖∞ for all f ∈ V .Solution: a) Suppose f, f ′, g ∈ V , a, b ∈ R.
〈, rangle is symmetri:

〈f, g〉 =

∫

G

fg =

∫

G

gf = 〈g, f〉.Sine Haar integral is linear
〈af+bf ′, g〉 =

∫

G

(af+bf ′)g =

∫

G

a(fg)+b(f ′g)) = a

∫

G

fg+b

∫

G

f ′g = a〈f, g〉+b〈f ′, g〉.Together with symmetriity this proves that 〈, 〉 is bilinear. Finally
〈f, f〉 =

∫

G

f2 ≥ 0and if f 6= 0

〈f, f〉 =

∫

G

f2 > 0by Proposition 1.5 in Topologial Transformation Groups I.b) We apply Shwartz inequality to f and onstant funtion 1 ∈ V toobtain
‖f‖1 =

∫

G

|f | = 〈|f |, 1〉 ≤ ‖f‖2‖1‖2 = ‖f‖2.) Sine |f(g)| ≤ ‖f‖∞ for all g ∈ G,
‖f‖2 =

∫

G

f 2 ≤

∫

G

‖f‖2
∞

= ‖f‖2
∞
.Taking square roots from the both sides of the equation yields the laim.3. Suppose G is a ompat group, V = Map(G,R) as above and φ ∈ V . De�nethe onvolution operator Tφ : V → V by

Tφ(f)(g) =

∫

G

φ(gh−1)f(h)fh.a) Prove that Tφ is well-de�ned linear mapping and
Tφ(f)(g) =

∫

G

φ(h)f(h−1g)dh.b) Show that
‖Tφ(f)‖2 ≤ ‖Tφ(f)‖∞ ≤ ‖φ‖∞‖f‖1 ≤ ‖φ‖∞‖f‖2for all f ∈ V . Conlude that Tφ : V → V is ontinuous with respet to ‖ · ‖2norm (Hint: Tφ is linear).Solution: a) Mapping G×G → R de�ned by (h, g) 7→ φ(gh−1)f(h) is learlyontinuous, so by Proposition 1.8 mapping Tφ(f) is ontinuous. Hene Tφ iswell-de�ned. Linearity of Tφ is lear by the linearity of Haar integral. Finallyusing invariant variable hange h 7→ h−1g we obtain equation

Tφ(f)(g) =

∫

G

φ(h)f(h−1g)dh.



3b)Inequalities ‖Tφ(f)‖2 ≤ ‖Tφ(f)‖∞ and ‖φ‖∞‖f‖1 ≤ ‖φ‖∞‖f‖2 followfrom the previous exerise. Also for every g ∈ G

|Tφ(f)(g)| = |

∫

G

φ(gh−1)f(h)fh| ≤

∫

G

|φ(gh−1)||f(h)|dh ≤ ‖φ‖∞

∫

G

|f(h)|dh = ‖φ‖∞‖f‖1.Sine Tφ is linear, we obtain
|Tφ(f)− Tφ(g)|2 = |Tφ(f − g)|2 ≤ ‖φ‖∞‖f − g‖2,whih implies that Tφ is even Lipshitz with respet to | · |2 norm, hene inpartiular ontinuous.4. Suppose G is a topologial group and φ : G → GL(Rn) is a ontinuous linearrepresentation of G in R

n.Suppose f : G → R is a matrix oe�ient of this representation and H is aompat subgroup of G. Show that the mapping f ′ : G → R de�ned by
f ′(g) =

∫

H

f(gh)dhis also a matrix oe�ient of φ, whih is onstant on the osets of H , i.e.
f ′(gh) = f ′(g)for all g ∈ G, h ∈ H .For the de�nition of matrix oe�ient see exerise 8.5.Solution: By the de�nition of the matrix oe�ient there exists linear map-ping L : Rn → R and v ∈ R

n suh that for all g ∈ G

f(g) = L(φ(g)(v)).Now L ◦ φ(g) is a linear mapping R
n → R for all g ∈ G. Sine vetor-valuedHaar integral ommutes with linear mappings (Proposition 1.10 in TTG I)and φ is a homeomorphism of groups, for every g ∈ G we obtain

f ′(g) =

∫

H

L(φ(gh)(v))dh =

∫

H

(L◦φ(g))(φ(h)(v))dh = L◦φ(g)(

∫

H

φ(h)(v)dh) = L(φ(g)(v′)),where v′ =
∫

H
φ(h)(v)dh ∈ R

n. Hene f ′ is a matrix oe�ient by the de�ni-tion.The fat that f ′ is onstant on osets of H is a simple onsequene of theinvariane of Haar integral:
f ′(gh) =

∫

H

f(gh′h)dh′ =

∫

H

f(gh′)dh = f ′(g).5. Prove the assoiativity of the twisted produt: suppose X is an G−H bispae,
Y an H −K bispae and Z is an K −G′ bispae. Prove that

(X ×
H
Y )×

K
Z ∼= X ×

H
Y ×

K
Z ∼= X ×

H
(Y ×

K
Z)as G−G′-bispae via the homeomorphisms [[x, y], z] 7→ [x, y, z] 7→ [x, [y, z]].



4 Solution: First we de�ne mapping (X×Y )×Z → X×
H
Y ×

K
Z by the formula

(x, y, z) → [x, y, z]. This mapping is evidently ontinuous and fators through
(X ×

H
Y )× Z, sine

[xh−1, hy, z] = [x, y, z].Canonial projetion p : X × Y → X ×
H
Y is an open surjetive mapping, soalso p× id : (X × Y )× Z → (X ×

H
Y )× Z is open surjetive, in partiular aquotient mapping. Hene the indued mapping (X ×

H
Y )× Z → X ×

H
Y ×

K
Zde�ned by the formula ([x, y], z) → [x, y, z] is ontinuous.In the next step we notie that this mapping fators through (X ×

H
Y ) ×

K
Z,sine

([x, y]k−1, kz) 7→ [x, yk−1, kz] = [x, y, z].Sine fatorization mapping q : (X ×
H
Y ) × Z → (X ×

H
Y ) ×

K
Z is a quotientmapping by de�nition, the mapping (X×

H
Y )×

K
Z → X×

H
Y ×

K
Z indued by itis ontinuous. This is the mapping de�ned by the formula [[x, y], z] 7→ [x, y, z].Similarly one onstruts the mapping X ×

H
Y ×

K
Z → (X ×

H
Y ) × Z whih isde�ned by the formula [x, y, z] 7→ [[x, y], z] and shows that it is ontinuous.Two onstruted mappings are learly inverses of eah other.The seond part of the laim is proved in the same way.6. a) Suppose G = S1 and H = {1,−1} = Z2. H ats on X = [0, 1] by

(−1) · x = 1− x.Prove that the spae G ×
H

X is homeomorphi to the quotient spae Y of
S1 × I with identi�ations (x, 0) ∼ (−x, 0) , x ∈ S1. (Hint: Think of S1 as Iwith identi�ations 0 = 1. Notie that the restrition of p : G×X → G×

H
Xto S1× [0, 1/2] is a quotient mapping, so G×

H
X is homeomorphi to Y - drawpitures.)b) Show that Y is homeomorphi to the Mobius band. (Hint: represent Yas a square with identi�ations. Then ut through the middle and rearrangepiees. ) What is S1-ation on Mobius band indued by this homeomorpism?) Modify your proofs above to show that S1 ×

H
S1, with ation of H on S1de�ned by

(−1) · z = z̄,is homeomorphi to the Klein's bottle.Solution: a, b)Let p : S1 × X → S1 ×
Z2

X be the anonial projetion. Firstof all we notie that
p(t, 1− x) = (t, (−1) · x) = (−t, x),



5so the restrition of p on the losed subset S1 × [0, 1/2] is a surjetion. Sineall spaes involved are ompat and Hausdor� ( inluding S1 ×
Z2

X whih isHausdor�, sine it is an orbit spae under ation of ompat group Z2), re-strition p|S1 × [0, 1/2] is a losed surjetion, hene in partiular a quotientmapping. Thus we see that S1 ×
Z2

X is homeomorphi to a spae indued by
p|S1×[0, 1/2]. Now the only identi�ations that happen in the set S1×[0, 1/2]are the identi�ations (t, 1/2) ∼ (−t, 1/2).To visualize situation let us reall that S1 an be thought of as a quotientspae of I = [0, 1] where the end points 0 and 1 are identi�ed to a point (forexample to a point (1, 0) ∈ S1). A onrete identi�ation an be done th-rough the mapping x 7→ e2πx = cos(2πx) + i sin(2πx). Also we an substituteinterval [0, 1/2] with the interval [0, 1], using homeomorphism x 7→ 2x.This means that we an think of our spae S1 ×

Z2

X as a quotient spae ofthe square I × I = I2 under the identi�ations (0, x) ∼ (1, x) (orrespondingto the identi�ation 0 ∼ 1 in S1, 'a' in the piture below) and (t, 1) ∼
(1/2+ t, 1) (orresponding to the identi�ation (t, 1/2) ∼ (−t, 1/2) above, 'b'in the piture below). The ation of S1 on the indued spae S1 ×

Z2

X in thisidenti�ation looks like the "horizonal"translation:
e2πu(x, y) = (x+ u(mod1), y).

Below is the piture of the square with these two types of identi�ationsmarked by the letters 'a' and 'b'. To see that it atually is homeomorphi toMobius band, we perform the following operations. First we ut the squareinto two squares using the vertial line t = 1/2, whih is denoted '' in thepiture. Now we an think of the spae to be obtained from the two squaresaording to identi�ations, i.e. "gluings�a', 'b', ''.
a

a

b b

c

c
a

a

b b

cNext we rearrange the piees, rotate one of them and glue them bak by'b'. This �nally leaves us with the spae whih is obtained from the square
I2 by identifying (x, 0) ∼ (1− x, 1), whih is preisely the Mobius band.



6
b b

a

ac

cIt remains to see how the ation of S1 orresponding to the homeomorphism
S1 ×

Z2

X to the Mobius band looks like on the Mobius band W . If we traethe original ation through all the transformations we made above that thisation orresponds to the following ation of S1 on the Mobius band. Suppose
(x, y) is a point on the square I2. We denote the orresponding point on theMobius band by (x, y). Suppose t ∈ S1 and let v ∈ [0, 1[ be suh that t = e2πiv.Then if 2v + y ≤ 1, i.e. 0 ≤ v ≤ (1− y)/2

t · (x, y) = (x, y + 2v).If (1− y)/2 ≤ v ≤ (1− y)/2 + 1/2 = 1− y/2

t · (x, y) = (1− x, 2v + y − 1).Finally if 1− y/2 ≤ v ≤ 1

t · (x, y) = (x, 2v + y − 2).This an be visualized on the square as following - as v goes from 0 to 1, i.e. tgoes around the irle ounter-lokwise - point t · (x, y) "travels"up with theonstant 2 speed until it reahes the line y = 1. Then we jump from the point
(x, 1) to the point (1 − x, 0) (whih is allowed sine we are on the Mobiusband) and ontinus in the same fashion. When we reah the "roof"again wejump bak to (x, 0) and ontinue until we reah (x, y) again.

b (x, y)

(x, 1)

(1− x, 0)Bonus points for the exerises: 25% - 1 point, 40% - 2 points, 50% - 3 points,60% - 4 points, 75% - 5 points.


