Matematiikan ja tilastotieteen laitos
Transformation Groups
Spring 2012
Exercise 11
17-20.03.2012

1. \mathbb{R} acts on \mathbb{R}^{2} by

$$
t \cdot(x, y)=(x+t, y) .
$$

Prove that \mathbb{R}^{2} is a Palais proper \mathbb{R}-space with this action.
2. Suppose G is a compact group, denote $V=\operatorname{Map}(G, \mathbb{R})$ and define $\langle\rangle:, V \times$ $V \rightarrow \mathbb{R}$ by the formula

$$
\langle f, g\rangle=\int_{G} f g .
$$

a) Prove that \langle,$\rangle is an inner product in V$.

We denote the norm induced by this inner product by $\|\cdot\|_{2}$. In other words

$$
\|f\|_{2}=\left(\int_{G} f^{2}\right)^{1 / 2} \text { for all } f \in V
$$

We also denote

$$
\|f\|_{1}=\int_{G}|f| \text { for all } f \in V
$$

b) Recall that in every inner product so-called Schwartz inequality

$$
|\langle a, b\rangle| \leq|a||b|
$$

holds (you don't have to prove this). Here $|\cdot|$ on the left is the absolute value of real number and on the right - norm in V induced by \langle,$\rangle .$
Use Schwartz inequality to show that for every $f \in \operatorname{Map}(G, \mathbb{R})$

$$
\|f\|_{1} \leq\|f\|_{2}
$$

c) Denote by $\|\cdot\|_{\infty}$ sup-norm in V, i.e.

$$
\|f\|_{\infty}=\sup \{|f(g)| \mid g \in G\}
$$

Prove that $\|f\|_{2} \leq\|f\|_{\infty}$ for all $f \in V$.
3. Suppose G is a compact group, $V=\operatorname{Map}(G, \mathbb{R})$ as above and $\phi \in V$. Define the convolution operator $T_{\phi}: V \rightarrow V$ by

$$
T_{\phi}(f)(g)=\int_{G} \phi\left(g h^{-1}\right) f(h) f h
$$

a) Prove that T_{ϕ} is well-defined linear mapping and

$$
T_{\phi}(f)(g)=\int_{G} \phi(h) f\left(h^{-1} g\right) d h
$$

b) Show that

$$
\left\|T_{\phi}(f)\right\|_{2} \leq\left\|T_{\phi}(f)\right\|_{\infty} \leq\|\phi\|_{\infty}\|f\|_{1} \leq\|\phi\|_{\infty}\|f\|_{2}
$$

for all $f \in V$. Conclude that $T_{\phi}: V \rightarrow V$ is continuous with respect to $\|\cdot\|_{2}$ norm (Hint: T_{ϕ} is linear).
4. Suppose G is a topological group and $\phi: G \rightarrow G L\left(\mathbb{R}^{n}\right)$ is a continuous linear representation of G in \mathbb{R}^{n}.
Suppose $f: G \rightarrow \mathbb{R}$ is a matrix coefficient of this representation and H is a compact subgroup of G. Show that the mapping $f^{\prime}: G \rightarrow \mathbb{R}$ defined by

$$
f^{\prime}(g)=\int_{H} f(g h) d h
$$

is also a matrix coefficient of ϕ, which is constant on the cosets of H, i.e.

$$
f^{\prime}(g h)=f^{\prime}(g)
$$

for all $g \in G, h \in H$.
For the definition of matrix coefficient see exercise 8.5.
5. Prove the associativity of the twisted product: suppose X is an $G-H$ bispace, Y an $H-K$ bispace and Z is an $K-G^{\prime}$ bispace. Prove that

$$
(X \underset{H}{\times} Y) \underset{K}{\times} Z \cong \underset{H}{X} \underset{K}{Y} \underset{K}{\times} \cong \underset{H}{X}(Y \underset{K}{\times} Z)
$$

as $G-G^{\prime}$-bispace via the homeomorphisms $[[x, y], z] \mapsto[x, y, z] \mapsto[x,[y, z]]$.
6. a) Suppose $G=S^{1}$ and $H=\{1,-1\}=\mathbb{Z}_{2}$. H acts on $X=[0,1]$ by

$$
(-1) \cdot x=1-x
$$

Prove that the space $G \underset{H}{\times} X$ is homeomorphic to the quotient space Y of $S^{1} \times I$ with identifications $(x, 0) \sim(-x, 0), x \in S^{1}$. (Hint: Think of S^{1} as I with identifications $0=1$. Notice that the restriction of $p: G \times X \rightarrow G \underset{H}{\times} X$ to $S^{1} \times[0,1 / 2]$ is a quotient mapping, so $G \underset{H}{\times} X$ is homeomorphic to Y - draw pictures.)
b) Show that Y is homeomorphic to the Mobius band. (Hint: represent Y as a square with identifications. Then cut through the middle and rearrange pieces.) What is S^{1}-action on Mobius band induced by this homeomorpism?
c) Modify your proofs above to show that $S_{H}^{1} \underset{H}{\times 1}$, with action of H on S^{1} defined by

$$
(-1) \cdot z=\bar{z},
$$

is homeomorphic to the Klein's bottle.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

