Matematiikan ja tilastotieteen laitos Transformation Groups Spring 2012 Exercise 1 23-29.01.2012

1. Prove that $\mathbb{R}^n, \ n \in \mathbb{N}$ equipped with standard topology and addition of vectors

 $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$

is a topological group.

2. Consider \mathbb{R}^2 as the set of complex numbers \mathbb{C} , equipped with the standard multiplication of complex numbers defined by

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc).$$

Show that $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is a topological group, if equipped with this multiplucation and standard topology as a subset of \mathbb{R}^2 . Why did we have to exclude 0?

- 3. Topological space X is called **homogeneous** if for every pair of points $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y. Prove that every topological group is homogeneous as a topological space. Conclude that the unit interval I = [0, 1] (equipped with its standard topology) cannot be given a structure of a topological group.
- 4. a) Suppose G is a topological group, U an open neighbourhood of the neutral element $e \in G$ and W an open neighbourhood of e such that

$$WW^{-1} \subset U.$$

Prove that $\overline{W} \subset U$. (Hint: xW is a neighbourhood of any point $x \in \overline{W}$). b) Topological space X is called **regular** if for any $x \in X$ and any open neighbourhood U of x there exists a neighbourhood W of x such that $\overline{W} \subset U$. Prove that every topological group is regular as a topological space.

- 5. Suppose X is a T_1 and regular topological space. Prove that X is Hausdorff. Conclude that every topological group is Hausdorff as a topological space.
- 6. A topological space is said to be T_0 -space, if for every pair of points x, y there exists a neighbourhood U of one of the points, that do not contain the other point.

a) Suppose X is T_0 and regular. Prove that X is Hausdorff.

b) Suppose (G, \cdot, τ) is a triple, where (G, \cdot) is a group and τ is a topology in the set G. Denote by $f: G \times G \to G$ the mapping defined by

$$f(x,y) = xy^{-1}.$$

Prove that G is a topological group if and only if G is T_0 as a topological space and f is continuous.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.