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1 Introduction: Sequences

In the very first basic courses on calculus and analysis in Euclidean spaces
one learns the importance and convenience of sequences. Practically every
definition, new object or result can be expressed, characterised or proved
with the use of sequences - and is often done that way. The same techniques,
ideas and results based on sequences work also in more general settings of
metric spaces or Banach spaces. Let us recall some typical results of metric
space theory which involve sequences. In the following X and Y are metric
spaces.

(1) Let A ⊂ X and x ∈ X. Then x ∈ A if and only if there exists a
sequence in the set A, which converges to x in X.

(2) Suppose f : X → Y and x ∈ X. Then f is continuous in the point x if
and only if for every sequence (xn)n∈N in X, which converges to x, the
sequence (f(xn))n∈N converges to f(x).
Thus we obtain the following characterization of continuity: f : X → Y
is continuous if and only if for every sequence (xn)n∈N in X which
converges to x ∈ X, the corresponding sequence (f(xn))n∈N converges
to f(x).

(3) X is compact if and only if every sequence in X has a cluster point.

(4) Y is compact if and only if every sequence in Y has a convergent sub-
sequence.
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These and many other results may lead one to think that sequences play
some universal role in mathematics and that everything can be solved with
the use of sequences. This is a generally occurring, but dangerous and false
misthought, which might lead to mistakes or incomplete proofs in settings
such as the theory of general topological spaces. In fact none of the four
results above are true for topological spaces in general. The first two of them
do remain true if we restrict ourselves to so-called first countable spaces i.e.
spaces in which every point has a countable neighbourhood basis. But even
in first countable spaces the results 3 and 4 fail to hold. For example there
exists Hausdorff first-countable space in which every sequence has a conver-
gent subsequence, but the space itself is not even paracompact, let alone
compact. If the space X is compact, then every sequence in X does have a
cluster point, but it need not have convergent subsequence, unless the space
is first countable.

In the following we show by explicit counter-examples that the four prop-
erties listed above do not hold for topological spaces in general.

Example 1.1. Let I = [0, 1] be the closed unit interval and consider the
space X = II with product topology. Then X is a separable, connected and
compact Hausdorff space.
Recall that the set X consists of all functions f : I → I. Let A ⊂ X be the
set of all f : I → {0, 1}, for which f−1{0} is finite and let f0 ∈ X be the zero
function. Then it is not difficult to see that f0 ∈ A. However if (fn)n∈N is a
sequence in A, then the set

{x ∈ I : fn(x) = 0 for some n ∈ N}

is countable, hence there exists x ∈ I such that fn(x) = 1 for all n ∈ N. It
follows that (fn) does not converge to f0 in X , since that would be equivalent
to

lim
n→∞

fn(x) = 0 = f0(x)

for all x ∈ I.

Example 1.2. Let X be as above and define the sequence (fn)n∈N in X
as following: Let n ∈ N and x ∈ I. The number x has a unique binary
representation of the form

x = α0, α1α2 . . . αn . . . ,

where αm ∈ {0, 1} for all indices m ∈ N and there is no index m0 such that
αm = 1 for all m ≥ m0.
Define

fn(x) = αn.
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Since X is compact, the sequence fn has a cluster point. Let us show that
this sequence does not have a convergent subsequence. Indeed let (fnk

)k∈N be
a subsequence. Define a point x ∈ I such that

x = 0, α1α2 . . . αn . . . ,

where αm = 0 if m = nk for some even k ∈ N and αm = 1 otherwise. Then
the sequence (fnk

(x))k∈N contains infinitely many 0’s and 1’s; hence it does
not converge. It follows that (fnk

)k∈N does not converge.
This examples shows both that a sequence in a compact space need not to have
a convergent subsequence, and that if a sequence has a cluster point then it
does not necessarily have a subsequence which converges to this point.

Example 1.3. Let X and (fn)n∈N be as in example 1.2. Let Y = {fn : n ∈ N}.
Then Y is a separable compact space. One can prove that in this space only
essentially constant sequences converge (see for example [A, Ch. 6]). Here
by essentially constant sequence we mean a sequence (xn)n∈N that is constant
starting from some index n0 ∈ N.
Let Z is any topological space. It follows then, that any function f : Y → Z
has the following property: if a sequence (yn)n∈N in Y converges to y, then
also the sequence (f(yn))n∈N converges to f(y). However since Y is not
discrete (it is an infinite compact space) such function may as well be not
continuous at any point.

Example 1.4. Let (Y,≤) be a well-ordered set, which has the following prop-
erties:
1) Y is uncountable.
2) For every y ∈ Y the set {x ∈ Y : x ≤ y} is countable.
The existence of this set follows easily from well-ordering theorem. In liter-
ature Y is usually called ”the first uncountable ordinal ”. Define the order
topology in Y by taking open intervals as a base. Then it can be proved that
every sequence in Y has a convergent subsequence. For this we only need to
notice that every sequence has a monotonic subsequence (this is true in every
ordered set). Now if sequence is decreasing, it has to be essentially constant,
since Y is well-ordered, hence it converges. If the sequence is increasing it
follows from property 2), that it has a supremum in Y , which will be its limit.
However Y is not compact, and not even Lindelöf, since the covering of Y
consisting of all bounded open intervals does not have a countable subcover-
ing (this also follows from property 2)). One can show that Y is not even
paracompact.

This and many others examples illustrate well enough that in general
topological spaces sequences fail to describe the topological nature and prop-
erties of the space in the same way they do for metric spaces. This is not
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surprising at all - after all the image of a sequence is a countable set so if
space is ”big enough” one cannot expect that one can describe its topological
behaviour using only countable subsets.

However since sequences prove to be so convenient in context of, say,
metric spaces, it would be helpful to develop some generalised concept which
would behave like sequences but work universally in all topological spaces.
A concept of nets is exactly such a concept.

2 Nets in topological spaces

The concept of a net is a straightforward generalization of a concept of se-
quence. Recall that by definition a sequence in a set X is nothing but a
mapping ϕ : N → X, where N is a set of natural numbers. It is customary to
denote the image point ϕ(n) of a sequence ϕ at a point n ∈ N by ϕn or even
xn. The whole sequence can be referred to as (ϕn)n∈N or (xn)n∈N.

Let X be a topological space and x ∈ X. We say that a sequence
ϕ : N → X converges to x if for every neighbourhood U of x, there exists
n0 = n0(U) such that xn = ϕ(n) ∈ U for all n ≥ n0. A point x ∈ X is called
a cluster point of a sequence (xn)n∈N if, for every neighbourhood U of x and
every n0 ∈ N there exists n ≥ n0 such that xn ∈ U .

We see that the definition of the convergence of a sequence is expressed
not only in terms of topology of a space, but also in terms of a relation ≥
in N. In other words we ”exploit” the order structure of the set of natural
numbers. The idea is that we have to ”make a choice” of index n0 such that
beyond that index some property always holds. Sometimes we have to make
finitely many choices of indexes. For example recall how we prove that in a
Hausdorff space sequence cannot converge towards two different points. We
make a counter-assumption that a sequence (xn)n∈N converges to different
points x, y ∈ X. Then we take neighbourhoods U and V of x and y which
do not intersect. By the definition of convergence there exist n0, n1 ∈ N such
that xn ∈ U for all n ≥ n0 and xn ∈ V for all n ≥ n1. Notice that we
made two choices of possibly different indexes here. But if n = max{n0, n1},
then xn ∈ U and xn ∈ V , which is impossible, since U ∩ V = ∅. Notice
that the last part of the proof succeeded due to the fact that in N for ev-
ery two numbers n0, n1 there exists a number n such that n ≥ n0 and n ≥ n1.
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We are now ready to present a generalization of sequence, based on the
discussion above. Recall that a binary relation ≤ in a set A is, by definition,
just a subset of the set A×A. If (x, y) ∈≤ we express this by symbols x ≤ y
and y ≥ x.

Definition 2.1. A pair (N,≤) is called a directed set if ≤ is a binary relation
in a non-empty set N such that
1) n ≤ n for every n ∈ N (≤ is reflexive).
2) if n ≤ m and m ≤ p then n ≤ p (≤ is transitive).
3) for every two elements n,m in N there exists an element p ∈ N such that
n ≤ p and m ≤ p (succesor of both m and n).
We often abuse the notation and say that N is a directed set directed by a
relation ≤.
If N is a directed set and X is any set, then any mapping ϕ : N → X is
called a net in X.

We will sometimes denote the net ϕ : N → X by the symbols (ϕn)n∈N ,
(xn)n∈N or just (xn).

Example 2.2. Every ordered set N is a directed set, since for any n,m ∈ N
either n ≤ m or m ≤ n. In particular the set of natural numbers with its
usual order is a directed set, so every sequence in a set X is also a net in
X. Notice that on the contrary the relation ≤ that directs a set need not to
be an order or even a partial order, since we don’t require antisymmetry: in
a directed set it may very well happen that n ≤ m and m ≤ n for different n
and m. For example the trivial binary relation N ×N directs a set N .

Example 2.3. Suppose X is any set. Pairs (P(X),⊂) and (P(X),⊃) are
directed sets, since for any two subsets A and B of X sets A∪B and A∩B
are also subsets of X.

Example 2.4. Let X be any set and let N be the collection of all finite
(countable) subsets of X with relation A ≤ B meaning A ⊂ B. Then N is a
directed set, since for any finite (countable) sets A,B it holds that

A ⊂ A ∪B,

B ⊂ A ∪B,

where A ∪B is a finite (countable) subset of X.

Suppose G is an abelian group, I is any set and N is the directed set of
all finite subsets of I. Suppose we are given a mapping i 7→ xi from the set

5



I into the group G. Then the mapping ϕ : N → G,

ϕ(J) =
∑
j∈J

xj

is a net in group G.

Example 2.5. A subset A of the set N directed by ≤ need not to be directed
by restriction of ≤ on A× A, since it may very well happen that every suc-
cessor of some elments m,n ∈ A is not in A. However for a certain class of
subsets of N this problem does not arise.
We say that a subset M of the set N directed by ≤ is cofinal if for every
n ∈ N there exists m ∈M such that

n ≤ m.

If M is cofinal, then (M,≤ |(M ×M)) is a directed set.

Example 2.6. Suppose (Ni,≤i)i∈I is a family of directed sets. Then we can
direct the product set

N =
∏
i∈I

Ni

in a following canonical way. For n,m ∈ N we define n ≤ m if and only if

ni ≤i mi for all i ∈ I.

Reader can easily prove that this indeed defines the structure of directed set
in N . Directed set (N,≤) is called the product of directed sets (Ni,≤i)i∈N .

Example 2.7. Let X be a topological space and x ∈ X. Then the set of all
neighbourhoods of x is a directed set N directed by the relation ⊃,

U ≤ V if and only if V ⊂ U.

Subset U of N is a cofinal subset of N if and only if U is a neighbourhood
basic of the point x.

If we choose a point xU ∈ U for every U ∈ U we obtain a net (xU)U∈U in
X

Suppose that N is a directed set and that ϕ : N → X is a net. For every
n ∈ N we denote by Nn the set

{m ∈ N : m ≥ n}.
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This set is called the tail of N determined by the element n ∈ N . The
set ϕ(Nn) is called the tail of the net ϕ determined by n. A tail is always
nonempty since it contains at least an element n or ϕ(n). Notice that by
induction and transitivity we obtain that for any finite number of elements
n1, . . . , nm in N there exists an element p ∈ N such that ni ≤ p for all
i = 1, . . . ,m. Hence it follows that

Np ⊂ ∩m
i=1Nni

,

(2.8) ϕ(Np) ⊂ ∩m
i=1ϕ(Nni

),

so in particular a finite intersection of tails is always nonempty.

Let X be a topological space and let ϕ : N → X be a net in X. We say
that ϕ converges to a point x ∈ X if for every neighbourhood U of x there
exists n0 ∈ N such that ϕ(n) ∈ U for all n ≥ n0. In this case we also say
that x is a limit(point) of the net ϕ and denote this by

x = limϕ = lim
n∈N

xn.

We will shortly see that in Hausdorff spaces the limit of a net is unique.
However in general a net can have several different limits, so in non-Hausdorff
spaces the symbol ”=” in a formula

x = limϕ

is not an an equation, but merely just a symbolic way to express the state-
ment ” x is a limit point of ϕ ”.

A point x ∈ X is called a cluster point of a net (xn)n∈N if for every
neighbourhood U of x and every n0 ∈ N there exists n ≥ n0 such that
xn ∈ U . Intuitively this means that a net ϕ ” keeps coming arbitrary close to
x ”. A limit point of a net is also its cluster point but the converse is not true.

The concepts of convergence and cluster point can be easily expressed in
terms of tails of a net. By definition x ∈ X is a limit of a net ϕ : N → X if
and only if for every neighbourhood U of x there exists n ∈ N such that

ϕ(Nn) ⊂ U.

A point x ∈ X is a cluster point of ϕ if and only if every neighbourhood U
of x interesects with the image of every tail of N , i.e for every n ∈ N

U ∩ ϕ(Nn) ̸= ∅.
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In other words it means presicely that

x ∈ ∩n∈Nϕ(Nn).

It follows that the set of all clusterpoints of a net is closed in X.
Notice that if N = N this definitions give the same result as traditional
definitions for sequences.

Example 2.9. Let (U ,⊃) be the directed set consisting of a neighbourhood
basis of a point x ∈ X. For every U ∈ U choose a point xU ∈ U . Then the
net (xU)U∈U converges to x.

Example 2.10. Let I be a set, G = (G,+) an abelian topological group
and i 7→ xi a mapping from I to G. In example 2.4 we have defined a net
ϕ : N → G (where N is a directed set of all finite subsets of I) by

ϕ(J) =
∑
j∈J

xj.

If this net converges we call its limit an (unordered) sum of elements (xi)i∈I
and denote it by ∑

i∈I

xi.

If I = N we have another notion of such a sum as series

∞∑
i=0

xn = lim
n→∞

n∑
i=0

xi

based on the limit of sequence. These notions are NOT equivalent. If the
unordered sum ∑

n∈N

xi = S

exists, then also the series
∑∞

i=0 xi converges to the same point S, but the
converse does not hold - a series may converge, although the corresponding
unordered sum does not exist. In fact one can prove that an unordered sum∑

n∈N xi exists if and only if the series

∞∑
i=0

xδ(i)

converges to the same limit for all bijections δ : N → N, hence the name un-
ordered sum.
Remark: Historically the study of unordered summation led Moore into de-
veloping the theory of nets.
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Example 2.11. Let [a, b] ⊂ R be a closed interval. Recall that by defi-
nition a subdivision S of this interval is a finite ordered set of its points
S = {a0, a1, . . . , an}, where a = a0 < a1 < . . . < an = b. A function c is
called a choice function for a subdivision S if it is defined on the set of all in-
tervals [ai−1, ai], i = 1, . . . , n and c([ai−1, ai]) ∈ [ai−1, ai] for all i = 1, . . . , n.
Consider a set N , which consists of pairs (S, c), where S is a subdivision of
of [a, b] and c is a choice function of S. Direct N by the relation ≤ defined
as follows:

(S, c) ≤ (S ′, c′) iff S ⊂ S ′.

Notice that this is an example of a directed set, which does not satisfy anti-
symmetry condition.
Suppose f : [a, b] → R is a mapping. We can define a net ϕ : N → R by
asserting

ϕ(S, c) =
n∑

i=1

(ai−1 − ai)f(c([ai−1, ai])).

If this net converges we say that f is Riemann integrable and we call its limit
the Riemann integral of f , denoted by∫

R

f.

Next we will show that nets do satisfy the properties we desire.

Proposition 2.12. Let A ⊂ X and x ∈ X. Then x ∈ A if and only if there
exists a net in A, which converges to x (in X).

Proof. Suppose x ∈ X is a cluster point of a net ϕ : N → A. Then every tail
ϕ(Nn) of this net is a subset of A, hence

x ∈
∩
n∈N

ϕ(Nn) ⊂ A.

In other words every cluster point, and hence especially every limit-point of
a net in A is in the closure of A.
Let x ∈ A. Consider some neighbourhood basis U of x as a directed set
directed by ⊃ relation. By assumption we can define a net ϕ : U → A such
that ϕ(C) ∈ C for every C ∈ U . It is not difficult to see that ϕ is a net in A
that converges towards x.

Since topology can be completely described in terms of closure, the previous
proposition means that the topology of a space can be completely described
in terms of the convergence of nets in this space.
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Proposition 2.13. Suppose f : X → Y and x ∈ X. Then f is continuous
at x if and only if for every net ϕ : N → X which converges to x, the net
f ◦ ϕ : N → Y converges to f(x).

Proof. Suppose f is continuous at x and ϕ is a net that converges to x. Let
V be a neighbourhood of f(x). Then there exists a neighbourhood U of x,
such that

f(U) ⊂ V.

Since ϕ converges to x there exists n0 ∈ N , such that ϕ(n) ∈ U for all n ≥ n0.
It follows that for n ≥ n0

f ◦ ϕ(n) = f(ϕ(n)) ∈ f(U) ⊂ V.

Hence f ◦ ϕ converges to f(x).

Suppose conversely the condition is true. It is enough to show that if x ∈ A,
then f(x) ∈ fA. If x ∈ A, by the previous composition there exists a net
ϕ : N → A such that ϕ converges to x. By the assumption f ◦ ϕ (which
is a net in fA) converges to f(x). Previous proposition now implies that
f(x) ∈ fA.

Proposition 2.14. A net ϕ : N → X in a product space X =
∏

i∈I Xi

converges to x = (xi)i∈I ∈ X if and only if for every i ∈ Ithe net ϕi =
pri ◦ ϕ : N → Xi converges to xi ∈ Xi.

Proof. Since the projection maps pri are continuous, the ”only if ” part fol-
lows from the previous proposition.

To prove the other direction suppose ϕ : N → X is a net in X and assume
that the nets ϕi = pri ◦ ϕ converge to xi for every i ∈ I. Let U =

∏
i∈I Ui

be a canonical neighbourhood of x and let J ⊂ I be a finite subset of I such
that Ui = Xi when i /∈ J . For every j ∈ J the set Uj is a neighbourhood of
xi in Xi, so there exists nj ∈ N , such that

prj(ϕ(n)) ∈ Uj

for every n ≥ nj. Since N is a directed set and J is finite, there exists n0 ∈ N
such that n0 ≥ nj for every j ∈ J . It follows that for every n ≥ n0 and every
index i ∈ I we have

pri(ϕ(n)) ∈ Ui,

hence ϕ(n) ∈ U . This shows that ϕ converges to x.
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Proposition 2.15. Suppose X is Hausdorff. Then every net in X has at
most one limit point.

Proof. Suppose that X is Hausdorff, ϕ : N → X is a net in X and a, b ∈ X
are two different points. Then a and b have disjoint neighbourhoods U and
V . If ϕ converges to both a and b, then there are n0 ∈ N and n1 ∈ N such
that for every n ≥ n0 we have ϕ(n) ∈ U and for every n ≥ n1 we have
ϕ(n) ∈ V . But there exists n ∈ N such that both n ≥ n0 and n ≥ n1, so
ϕ(n) ∈ U ∩ V = ∅, which is a contradiction.

Proposition 2.16. A topological space X is compact if and only if every net
in X has a cluster point.

Proof. Let X be compact. Suppose ϕ : N → X is a net. Consider the family

F = {ϕ(Nn) : n ∈ N}

of closed subsets of X. By (2.8), this family has finite intersection property.
Since X is compact it follows that∩

n∈N

ϕ(Nn) =
∩

F ̸= ∅.

This means that ϕ has a cluster point.

On the contrary suppose that every net in X has a cluster point. Let F be
a family of closed subsets of X which has the finite intersection property. It
is enough to show that ∩

F ̸= ∅.

Let N be the collection of all finite intersections of elements of the family
F , then relation ⊃ directs N . Since every element of N is non-empty, there
exists a net ϕ : N → X, that has property

ϕ(F ) ∈ F for all F ∈ N.

By assumption this net has a cluster point x ∈ X. Hence x is in the closure
of every set in N , especially in the closure of every set F ∈ F ⊂ N . But all
sets F ∈ F are closed, so

x ∈
∩

F ,

and the claim is proved.
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We know that in metric spaces the previous proposition can also be stated
in the form ”X is compact if and only if every sequence has a convergent
subsequence”. In order to obtain a similar result for nets we need to gen-
eralize the notion of subsequence. This time, however, we cannot make a
straightforward generalization.

Recall that by a subsequence of a sequence (xn)n∈N one usually means a
sequence (xnk

)k∈N, where the function k 7→ nk is assumed to be a strictly
increasing mapping of N into itself (as we will see soon this is an unnecessarily
strong condition, but it is enough for sequences). We could, of course, adopt
the same definition for nets and say that a net ψ : N → X is a subnet
of a net ϕ : N → X if ψ = ϕ ◦ α, where α : N → N is a strictly increasing
mapping. But this will not work for our purposes at all, because then subnets
of sequences will be subsequences and, as the examples in the first chapter
show, the proposition ”X is compact if its every net has a convergent subnet”
will not be true. So we have to be more clever than that and come up with
something more general. Notice that above we didn’t change the domain of
the net, when trying to define a subnet. If we allow the domain to change,
then our goal will be achieved.

Definition 2.17. Let M and N be directed sets. A mapping α : M → N is
called cofinal if for every n0 ∈ N there exists m0 ∈ M such that α(m) ≥ n0

for all m ≥ m0.

Remark: A mapping α : M → N between directed sets is cofinal if and only
if the image of every cofinal subset of M is cofinal in N , hence the term ”
cofinal mapping”.

The concept of cofinal mapping reflects the intuitive idea of ”m growing
arbitrary large as n grows arbitrary large”.

Definition 2.18. Let ϕ : N → X be a net in a set X. A net ψ : M → X is
called a subnet of ϕ if there exists a cofinal mapping α : M → N such that
ψ = ϕ ◦ α.

A subnet ψ of a sequence ϕ, which is a sequence itself (i.e. the domain of
which is N) is called a subsequence of ϕ. Notice that our new definition of
sequence includes all subsequences in a traditional sence, but also produce
some new subsequences, so our definition of a subsequence is broader than
the traditional definition. This, however, does not cause any problem in
practice.
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Example 2.19. Itis not difficult to see that a mapping α : N → N is cofinal
if and only if α−1(n) is finite for every n ∈ N.

Example 2.20. Suppose (N,≤) is a directed set and M ⊂ D such that the
restriction of ≤ on M×M directs M . Then the canonical inclusion mapping
i : M → N is cofinal if and only if M is cofinal. If ϕ : N → X is a net and
A is a cofinal subset of N , than ϕ|A is a subnet of ϕ. Such subnets are called
cofinal subnets. Every subsequence of a sequence ϕ is a cofinal subnet of ϕ.

Proposition 2.21. A point x ∈ X is a cluster point of a net ϕ if and only
if there exists a subnet of ϕ which converges to x. If ϕ converges to x then
its every subnet also converges to x. If x is a cluster point of a subnet of ϕ,
then x is also a cluster point of ϕ.

Proof. Suppose ψ = ϕ ◦ α is a subnet of ϕ, α : M → N is a cofinal mapping.
Suppose, that x ∈ X is a cluster point of ψ and let n0 ∈ N , V be a neigh-
bourhood of x in X. Then there exists m0 ∈ M , such that α(m) ≥ n0 for
all m ≥ m0. Since x is a cluster point of ψ, there exists m ≥ m0 such that
ψ(m) = ϕ(α(m)) ∈ V . Since n = α(m) ≥ n0, it follows that x is a cluster
point of ϕ as well and the last claim is proved. Also it follows that if x is a
limit of ψ, it is also a cluster point of ϕ.
Suppose x = limϕ and let U be a neighbourhood of x. There exists n0 ∈ N
such that ϕ(n) ∈ U for every n ≥ n0. Since ψ is a subnet, there exists
m0 ∈ M , such that α(m) ≥ n0 for every m ≥ m0. It follows that for every
m ≥ m0

ψ(m) = ϕ(α(m)) ∈ U.

Hence x = limψ.
Suppose x is a cluster point of a net ϕ : N → X. Let U be the set of all
neighbourhoods of x in X and let P = U ×N be a product of directed sets
U and N . Consider the subset

M = {(U, n) ∈ P | ϕ(n) ∈ U}

of P . Then M is cofinal in P : suppose (U, n) ∈ P . Since x is a cluster
point of ϕ there exists n′ ≥ n such that ϕ(n′) ∈ U . Now (U, n′) ∈ M and
(U, n′) ≥ (U, n). Hence M is cofinal in P , in particular M itself is a directed
set.
Define α : M → N by α(U, n) = n. It is not difficult to see that α is cofinal:
let n0 ∈ N , then for every (U, n) ≥ (X,n0) it is true that

α(U, n) = n ≥ n0.
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Hence ψ = ϕ ◦ α is a subnet of ϕ. This net converges to x, since for every
neighbourhood U of x

ψ(V, n) ∈ V ⊂ U

when (V, n) ≥ (U, n′), where n′ is any fixed element of N .

Corollary 2.22. X is compact if and only if every net in X has a convergent
subnet.

Example 2.23. Let N be the set of pairs (S, c), considered in Example 2.11.
Define the length ∥S∥ of subdivision S = {a0, a1, . . . , an} to be the greatest of
the lenghts of intervals [ai−1, an], i = 1, . . . , n. Define relation ≪ in N such
that

(S, c) ≪ (S ′, c′) iff ∥S ′∥ ≤ ∥S∥.

Then (N,≪) will be a directed set. In Example 2.11 we also defined a dif-
ferent relation ≤ in N . Now the identity mapping id : (N,≤) → (N,≪) is
increasing (if S ⊂ S ′ then ∥S ′∥ ≤ ∥S∥), hence cofinal. It follows that if
f : [a, b] → R is a mapping, and ϕ : (N,≤) → R is a net defined in an Ex-
ample 2.11, then it is a subnet of the net ϕ′ = ϕ : (N,≪) → R defined by
the same formula. Hence if ϕ′ converges also ϕ converges and f is Riemann-
integrable. One can prove that also converse statement is true: if ϕ converges,
also ϕ′ converges (this is proved in the course Analysis II).

Next we will give an example on a typical use of nets for proving theorems. It
is important to notice that we can often use nets formally in exactly the same
way as sequences, and a proof done with sequences for a special case often
works for the general case if sequences are replaced with nets. Often one can
even write a general proof by simply exchanging every word ”sequence” with
a word ”net” at its every appearance!

Theorem 2.24. Suppose G is a compact group acting on a topological space
X. Then the action mapping Φ: G×X → X is closed.

Proof. Let C be a closed subset of G×X and suppose y ∈ Φ(C). It is enough
to show that y ∈ Φ(C). Since y ∈ Φ(C), it follows that there exists a net
ϕ : N → Φ(C), which converges to y. For every n ∈ N there exist gn ∈ G
and xn ∈ X such that (gn, xn) ∈ C for every n ∈ N and

ϕ(n) = Φ(gn, xn) = gnxn.

Hence we can define nets ϕ1 : N → G, ϕ2 : N → X by

ϕ1(n) = gn,

14



ϕ2(n) = xn.

Since G is compact, there exists a subnet ψ1 = ϕ1 ◦ α : M → G, which
converges to a point g ∈ G, here α : M → N is a cofinal mapping. Let
ψ2 = ϕ2 ◦ α : M → X, then ψ2 is a subnet of ϕ2. Now a net M → X defined
by

m 7→ Φ(ψ1(m), ψ2(m))

is a subnet of ϕ, hence is a net in Φ(C) which also converges to y, so we
may assume ϕ is such that ϕ1 converges in G to a point g. Now, since Φ is
a continuous action, we obtain that

ϕ2(n) = xn = g−1
n gnxn = Φ(g−1

n ,Φ(gn, xn))

converges to Φ(g−1, y) = g−1y. It follows that the product net (gn, xn) in C
converges to a pair (g, g−1y). Since C is closed, also limit point (g, g−1y) is
an element of C. Hence

y = g(g−1y) = Φ(g, g−1y) ∈ Φ(C)

and the claim is proved.

I advise the reader to submit a proof for the previous proposition assuming
that both spaces G and X are first countable spaces and to compare it to
the general proof above.
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