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1 Preliminaries

Lemma 1. Suppose that G is a topological group and M is an arbitrary sub-
space of G. Then a function f : M → R is continuous at a ∈ M if and only if
for all ε > 0 there exists a neighbourhood U of identity such that

|f(x)− f(a)| < ε

for all x ∈M satisfying xa−1 ∈ U .

Proof. Exercise 7.2. (a) �

Definition 1. Suppose that G is a topological group and M is a subspace of
G. Then a function f : M → R is said to be uniformly continuous in the
1st sense if for all ε > 0 there exists a neighbourhood U of identity so that

|f(x)− f(y)| < ε

for all x, y ∈M satisfying xy−1 ∈ U .
The function f is said to be uniformly continuous in the 2nd sense if

for all ε > 0 there exists a neighbourhood U of identity so that

|f(x)− f(y)| < ε

for all x, y ∈M satisfying x−1y ∈ U .

The two definitions above are not in general equivalent. However, we have the
following lemma.

Lemma 2. Let G be a topological group and M a compact subspace of G.
Then any continuous function f : M → R is uniformly continuous in both of the
senses in the previous definition.

Proof. Exercise 7.2. (b) �

Definition 2. Let G be a topological group, M its subspace and ∆ a family of
functions M → R. Then we say that the family ∆ is uniformly equicontin-
uous if and only if for every ε > 0 there exists a neighbourhood U of e such
that

|f(x)− f(y)| < ε

1



holds for every f ∈ ∆ whenever x, y ∈M satisfy xy−1 ∈ U .
Moreover, we say that ∆ is uniformly bounded if there exists M ∈ R such

that
|f(x)| < M

for all f ∈ ∆, x ∈M .

Definition 3. Let X be a set and fk : X → R (k = 1, 2, . . . ) a sequence of
functions. We say that fk converges uniformly to a function f : X → R if and
only if for every ε > 0 there exists n ∈ N so that for every k ≥ n we have

|f(x)− fk(x)| < ε

for all x ∈ X.

Lemma 3. A sequence of functions fk : X → R (k = 1, 2, . . . ) converges uni-
formly if and only if for every ε > 0 there exists n ∈ N such that for every
p, q ≥ n we have

|fp(x)− fq(x)| < ε

for all p, q ∈ N.

Proof. Suppose first that fk converges uniformly to f . Let ε > 0 be given. Then
there exists n ∈ N so that for every k ≥ n we have

|fk(x)− f(x)| < ε/2

for all x ∈ X. Then if p, q ≥ n, we also have

|fp(x)− fq(x)| ≤ |fp(x)− f(x)|+ |fq(x)− f(x)| < ε.

For the other direction the condition in the statement of the lemma implies
that for any fixed x ∈ X the sequence fk(x) (k ∈ N) is Cauchy. Hence for all
x ∈ X there exists a limit f(x). Now let ε > 0. Then there exists n ∈ N such
that

|fp(x)− fq(x)| < ε/2

holds for all p, q ≥ n, x ∈ X. Now for any fixed x ∈ X we have

|f(x)− fq(x)| ≤ |f(x)− fp(x)|+ |fp(x)− fq(x)| < |f(x)− fp(x)|+ ε

2
,

and choosing large enough p, we get

|f(x)− fq(x)| < ε.

Because this holds for every x and q ≥ n, we see that the sequence fk converges
uniformly to f . �

Lemma 4. Suppose that the set X is endowed with topology and fk : X → R is
a sequence of continuous functions converging uniformly to a function f : X →
R. Then f is continuous.
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Proof. Fix a ∈ X. We’ll show that f is continuous at a. That is, given ε > 0,
we have to find an open neighbourhood U of a such that |f(x) − f(a)| < ε for
every x ∈ U . Because the sequence fk is uniformly convergent, there exists
n ∈ N such that

|fn(x)− f(x)| < ε/3

for all x ∈ X. Moreover because fn is continuous, there exists a neighbourhood
U of a such that

|fn(x)− fn(a)| < ε/3

for all x ∈ U . Hence

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < ε

for all x ∈ U . �

Lemma 5. Let G be a topological group and M a compact subspace of G. Then
any uniformly convergent sequence fk : M → R (k = 1, 2, . . . ) of continuous
functions is uniformly equicontinuous and uniformly bounded.

Proof. Let ε > 0 be given and suppose that fk converges to f uniformly. Since
f is continuous and M is compact, f is also uniformly continuous by Lemma 2.
Hence there exists a neighbourhood V of identity such that |f(x)− f(y)| < ε/3
for all x, y ∈M satisfying xy−1 ∈ V . Moreover there exists n ∈ N such that for
all k ≥ n we have

|f(x)− fk(x)| < ε/3

for all x ∈M . Thus

|fk(x)− fk(y)| ≤ |fk(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− fk(y)| < ε

whenever x, y ∈ M satisfy xy−1 ∈ V . Now denote by Vi, i = 1, 2, . . . , n − 1, a
neighbourhood of identity such that

|fi(x)− fi(y)| < ε

for all x, y ∈ M satisfying xy−1 ∈ Vi. If we now let U = V ∩
⋂n−1

i=1 Vi, then for
all x, y ∈M satisfying xy−1 ∈ U we have

|fk(x)− fk(y)| < ε

for all k ∈ N. Hence the sequence fk is uniformly equicontinuous.
The uniform boundedness follows from the compactness of M : The functions

f1, . . . , fn−1 are bounded by some constant M and the rest of the functions are
bounded by supx∈M |f(x)|+ ε. �

Definition 4. Let X be a compact topological space and f : X → R a contin-
uous function. Then the oscillation of f is the real number

osc f = sup
x∈X

f(x)− inf
x∈X

f(x).
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Lemma 6. Assume that X is a compact topological space and suppose that
fk : X → R is a sequence of continuous functions converging uniformly to
f : X → R. Then we have

lim
k→∞

min
x∈X

fk(x) = min
x∈X

f(x)

lim
k→∞

max
x∈X

fk(x) = max
x∈X

f(x)

lim
k→∞

osc fk = osc f.

Proof. Just notice that for any ε > 0 and large enough k we have

min
x∈X

f(x)− ε ≤ min
x∈X

fk(x) ≤ min
x∈X

f(x) + ε,

since if the minimum of f is attained at a point a ∈ X, then

min
x∈X

fk(x) ≤ fk(a) ≤ f(a) + ε

and if the minimum of fk is attained at a point b ∈ X, then

fk(b) ≥ f(b)− ε ≥ f(a)− ε.

A similar deduction works for maximum. The result for oscillation follows im-
mediately from the first two. �

Finally we’ll prove the following version of Arzelà-Ascoli theorem.

Theorem 1. Let G be a topological group and M a compact subspace of G.
If ∆ is a uniformly equicontinuous and uniformly bounded family of functions
M → R, then every sequence of functions fk ∈ ∆ (k = 1, 2, . . . ) contains a
uniformly convergent subsequence.

Proof. We start with the following lemma.

Lemma 7. Suppose that ∆′ is an infinite, uniformly equicontinuous and uni-
formly bounded family of functions M → R. Then for any ε > 0 there exists an
infinite subfamily ∆′ε of ∆′ such that

|f(x)− g(x)| < ε

for all f, g ∈ ∆′ε, x ∈M .

Proof. For every a ∈ M there exists by equicontinuity an open neighbourhood
Ua of a such that for all f ∈ ∆′, x ∈ Ua we have

|f(x)− f(a)| < ε

3
.

Now these neighbourhoods cover M and hence we can choose from them a finite
subcover Ua1

, . . . , Uan
. We’ll now construct the subfamily ∆′ε in steps.

First note that for any a ∈ M , the set {f(a) : f ∈ ∆′} is a bounded subset
of R. Hence there exists an interval I of length ε/3 such that f(a) ∈ I for
infinitely many f ∈ ∆′. Denote by ∆′a the infinite subfamily of ∆′ containing
these functions. Then for all f, g ∈ ∆′a we have |f(a)− g(a)| < ε

3 . Therefore

|f(x)− g(x)| ≤ |f(x)− f(a)|+ |f(a)− g(a)|+ |g(a)− g(x)| < ε
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for all f, g ∈ ∆′a and x ∈ Ua.
Apply the above argument for a = a1 to obtain a subfamily ∆′a1

such that

|f(x)− g(x)| < ε

for x ∈ Ua1
, f, g ∈ ∆′a1

. Then apply it for a = a2 and the family ∆′a1
in

place of ∆′ to obtain a new family ∆′a1,a2
. Continue like this to get a family

∆′a1,...,an
= ∆′ε for which

|f(x)− g(x)| < ε

holds for all x ∈
⋃n

k=1 Uak
= M . �

Let now fk ∈ ∆ (k = 1, 2, . . . ) be a sequence of functions from ∆ and
let ∆′ = {fk : k ∈ N}. If ∆′ is finite, then one of the functions fk appears
infinitely many times in the sequence and hence we can choose (fk, fk, . . . ) as
the uniformly convergent sequence. So suppose that ∆′ is infinite. Now by the
lemma above we can find an infinite subset ∆1 of ∆′ for which |f(x)−g(x)| < 1
for all x ∈ M , f, g ∈ ∆1. Supposing we have already defined ∆n−1 for some
n ≥ 2, we may again use the lemma to find an infinite subset ∆n ⊂ ∆n−1 such
that |f(x)− g(x)| < 1

n for all x ∈M , f, g ∈ ∆n. Now choose a subsequence gm
of fk by choosing gm = fkm

from ∆m, m = 1, 2, . . . so that km+1 > km. We
now see that gm converges uniformly, because if l ≥ m, then

|gl(x)− gm(x)| < 1

m

for all x ∈M and hence gm is uniformly Cauchy. �

2 The Haar integral

Definition 5. Let G be a compact topological group and C(G) the space of
continuous functions G→ R. A mapping I : C(G)→ R satisfying the following
properties is called a Haar integral on G. (It is customary to write I(f) =∫
f(x) dx.)

(H1)
∫
cf(x) dx = c

∫
f(x) dx for all f ∈ C(G), c ∈ R

(H2)
∫
f(x) + g(x) dx =

∫
f(x) dx +

∫
g(x) dx for all f, g ∈ C(G)

(H3) For all f ∈ C(G) that satisfy f(x) ≥ 0 (x ∈ G) we have
∫
f(x) dx ≥ 0.

(H4) If a is an arbitrary element of G, then
∫
f(xa) dx =

∫
f(x) dx.

(H5) Let f ∈ C(G) be defined by f(x) = 1 for all x ∈ G. Then
∫
f(x) dx = 1.

We make some remarks regarding the definition. First of all notice that (H5)
is just a matter of normalization: without it we could multiply any mapping I
satisfying (H1)–(H4) by a constant c ≥ 0 to get another mapping I ′ = cI that
also satisfies the same properties. Property (H4) is the most interesting one, it
states that the integral is invariant with respect to the group operation.

The existence and uniqueness of the integral are addressed in the following
theorem.
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Theorem 2. An integral as defined above exists on a compact topological
group G and is unique.

We’ll approach Theorem 2 by proving small lemmas. Before that, let’s however
make a few definitions and fix some notation. From now on we’ll fix a compact
topological group G. If A = (a1, . . . , an) is a finite sequence of elements of G,
we set

M(A, f ;x) =
1

n

n∑
k=1

f(xak).

Lemma 8. Let A = (a1, . . . , an) be a finite subsequence of elements of G and
f ∈ C(G). Then the mapping M(A, f), x 7→ M(A, f ;x), is continuous and
satisfies the following inequalities:

inf M(A, f) ≥ inf f

supM(A, f) ≤ sup f

oscM(A, f) ≤ osc f.

Moreover if B = {b1, . . . , bm} is also a finite subsequence of elements of G, then

M(A,M(B, f)) = M(AB, f),

where AB is the subsequence (aibj : 1 ≤ i ≤ n, 1 ≤ j ≤ n).

Proof. The continuity of M(A, f) is clear. The first two inequalities are implied
by

M(A, f ;x) =
1

n

n∑
k=1

f(xak) ≥ 1

n

n∑
k=1

inf
x∈G

f(x) = inf
x∈G

f(x),

and

M(A, f ;x) =
1

n

n∑
k=1

f(xak) ≤ 1

n

n∑
k=1

sup
x∈G

f(x) = sup
x∈G

f(x).

The third inequality follows from the first two since

oscM(A, f) = supM(A, f)− inf M(A, f) ≤ sup f − inf f = osc f.

Finally

M(A,M(B, f);x) =
1

n

n∑
k=1

M(B, f ;xak) =
1

nm

n∑
k=1

m∑
j=1

f(xakbj)

= M(AB, f ;x). �

Lemma 9. Suppose that f ∈ C(G) is not constant. Then there exists a finite
subsequence A of elements of G such that

oscM(A, f) < osc f.

Proof. Let U = f−1(−∞, sup f). Because f is continuous, U is open and the
sets Ux−1, x ∈ G, cover G. Because G is compact, there exists a finite subcover
Ua−1

1 , . . . , Ua−1
n where a1, . . . , an ∈ G. Now let A = (a1, . . . , an) and let x ∈ G
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be arbitrary. Then x can be written in the form x = ua−1
j for some u ∈ U and

1 ≤ j ≤ n. Now we have

M(A, f ;x) =
1

n

n∑
k=1

f(xak) =
1

n

∑
k 6=j

f(xak) +
f(xaj)

n

<
n− 1

n
sup f +

sup f

n
= sup f.

Because G is compact, also supM(A, f) < sup f and hence

oscM(a, f) = supM(A, f)− inf M(A, f) < sup f − inf f = osc f. �

Definition 6. A real number p is a right mean of f ∈ C(G) if for every ε > 0
there exists a finite subsequence A = (a1, . . . , an) of elements of G such that

|M(A, f ;x)− p| < ε

for all x ∈ G.

Lemma 10. Every continuous function f ∈ C(G) admits a right mean.

Proof. Let

∆ = {M(A, f) : A is a finite subsequence of elements of G}.

We shall show that ∆ is an equicontinuous family of continuous functions. Sup-
pose that ε > 0 is given. Because f is continuous, it is also uniformly continuous
by Lemma 2, and hence there exists a neighbourhood U of identity such that
|f(x) − f(y)| < ε for all x, y ∈ G satisfying xy−1 ∈ U . Thus for any x, y ∈ G
and M(A, f) ∈ ∆ we have

|M(A, f ;x)−M(A, f ; y)| = | 1
n

n∑
k=1

(f(xak)− f(yak))|

≤ 1

n

n∑
k=1

|f(xak)− f(yak)| < ε,

whenever xaka
−1
k y−1 = xy−1 ∈ U . This means that the family ∆ is equicontin-

uous. Moreover, ∆ is uniformly bounded since f is bounded by some constant
M and hence

|M(A, f ;x)| ≤ 1

n

n∑
k=1

|f(xak)| ≤M.

Let now s = infM(A,f)∈∆ oscM(A, f). Then there exists a sequence of func-
tions fk ∈ ∆ so that

lim
k→∞

osc fk = s.

By Theorem 1 there exists a uniformly convergent subsequence gk of fk. Let g
be the limit of gk so that osc g = s. We’ll show that g is a constant, which will
then imply that s = 0. Suppose that g isn’t constant. Then by Lemma 9 there
exists a finite set A of elements of G so that

oscM(A, g) = s′ < s.
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Because gk converge uniformly to g, we get that there exists k ∈ N such that

|gk(x)− g(x)| < s− s′

3

for all x ∈ G. Hence

|M(A, gk;x)−M(A, g;x)| < s− s′

3

and thus

oscM(A, gk) ≤ s′ +
2(s− s′)

3
< s.

Notice that gk = M(A′, f) for some finite set A′, so by Lemma 8 we have

M(A, gk) = M(A,M(A′, f)) = M(AA′, f) ∈ ∆.

This is a contradiction since s was chosen to be the infimum of oscillations of
functions in ∆. Thus g(x) = p is a constant.

This immediately implies that p is a right mean of f , since by the uniform
convergence for any ε > 0 there exists gk ∈ ∆ such that

|gk(x)− p| < ε

for all x ∈ G. �

Next we’ll make analogous statements for the functions

M ′(A, f ;x) =
1

n

n∑
k=1

f(akx).

We call a number p a left mean of f if for any ε > 0 there exists a finite
sequence A of elements of G such that

|M ′(A, f ;x)− p| < ε

for all x ∈ G.

Lemma 11. Let A,B be finite sequences of elements of G. Then we have

M(A,M ′(B, f)) = M ′(B,M(A, f)).

Proof. By direct calculation

M(A,M ′(B, f);x) =
1

n

n∑
j=1

M ′(B, f ;xaj)

=
1

nm

n∑
j=1

m∑
k=1

f(bkxaj)

=
1

m

m∑
k=1

M(A, f ; bkx) = M ′(B,M(A, f);x)

for all x ∈ G. �
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Lemma 12. Every continuous function f ∈ C(G) admits a left mean.

Proof. Define a new topological group G′ by setting G′ = G as a topological
space and defining the group multiplication × : G′×G′ → G′ by a× b = ba. We
indeed have a group:

• Associativity: a× (b× c) = a× (cb) = cba = (ba)× c = (a× b)× c

• Identity: a× e = e× a = a

• Inverses are the same as in G: a× a−1 = a−1 × a = e

G′ is also a topological group since × is given by (a, b) 7→ (b, a) 7→ ba and is
hence clearly continuous. By Lemma 10 there exists a right mean p for f in G′.
Thus for any ε > 0 there exists a finite sequence A of elements of G such that

|MG′(A, f ;x)− p| < ε.

But

MG′(A, f ;x) =
1

n

n∑
k=1

f(x× ak) =
1

n

n∑
k=1

f(akx),

so MG′ = M ′G and hence p is a left mean for f in G. �

Lemma 13. Let f ∈ C(G) and suppose that A is a finite sequence of elements
of G. Suppose that |M(A, f ;x)− p| < ε for all x ∈ G. Then

|M ′(B,M(A, f);x)− p| < ε

for all finite sequences B of elements of G and x ∈ G.
Similarly if B is a finite sequence of elements of G and |M ′(B, f ;x)− p| < ε

for all x ∈ G, then
|M(A,M ′(B, f);x)− p| < ε

for all finite sequences A of elements of G and x ∈ G.

Proof. Let B = (b1, . . . , bm). By direct calculation we have

|M ′(B,M(A, f);x)− p| =

∣∣∣∣∣∣ 1

m

m∑
j=1

(M(A, f ; bjx)− p)

∣∣∣∣∣∣
≤ 1

m

m∑
j=1

|M(A, f ; bjx)− p| < ε.

A similar calculation proves the other inequality. �

Lemma 14. For any f ∈ C(G) there exist unique left and right means and
they are the same.

Proof. It is enough to prove that if p is a right mean of f and q is a left mean
of f , then p = q. Choose an arbitrary ε > 0. Then there exists a finite sequence
A = (a1, . . . , an) of elements of G such that

|M(A, f ;x)− p| < ε.
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for all x ∈ G. Similarly there exists a finite subsequence B = (b1, . . . , bm) of
elements of G such that

|M ′(B, f ;x)− q| < ε.

for all x ∈ G. By Lemma 13

|M ′(B,M(A, f);x)− p| < ε and |M(A,M ′(B, f);x)− q| < ε

for all x ∈ G. Together with Lemma 11 this implies that |p − q| ≤ 2ε and
because ε was arbitrary, p = q. �

In view of the above lemma, we can make the following definition.

Definition 7. The mean M(f) of a continuous function f ∈ C(G) is either
the right or the left mean of f .

Lemma 15. For any f, g ∈ C(G) we have M(f + g) = M(f) + M(g).

Proof. Let p = M(f) and q = M(g). We’ll first show that p is a right mean of
M(B, f) for any finite sequence B of elements of G. Indeed because p is a left
mean of f , for any ε > 0 there exists a finite sequence A of elements of G such
that

|M ′(A, f ;x)− p| < ε.

Thus by Lemma 13 we have

|M(B,M ′(A, f);x)− p| < ε,

and by Lemma 11 this is the same as

|M ′(A,M(B, f);x)− p| < ε,

from which the claim follows.
Choose now an arbitrary ε > 0. Because q is a right mean of g, there exists

a finite sequence B of elements of G so that

|M(B, g;x)− q| < ε

for all x ∈ G. Similarly because p is a right mean of M(B, f), there exists a
finite sequence A of elements of G so that

|M(A,M(B, f);x)− p| < ε,

which by Lemma 8 is the same as

|M(AB, f ;x)− p| < ε.

Now if we write A = (a1, . . . , an), then

|M(AB, g;x)− q| = |M(A,M(B, g;x))− q| = | 1
n

n∑
k=1

(M(B, g;xak)− q) |

≤ 1

n

n∑
k=1

|M(B, g;xak)− q| < ε

for all x ∈ G. Therefore

|M(AB, f + g;x)− (p + q)| ≤ 2ε

holds for all x ∈ G, implying that p + q is a right mean of f + g. �
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We’ll now prove Theorem 2.

Proof. Set
∫
f(x) dx = M(f). The properties (H1),(H2),(H3) and (H5) are

clearly satisfied. It remains to show (H4) and uniqueness. Let’s start with
(H4). Fix an element a ∈ G and set f ′(x) = f(xa). Now for any ε > 0 there
exists a finite sequence A of elements of G so that

|M(A, f ;x)−M(f)| < ε

holds for all x ∈ G. In particular this implies that

|M(Aa−1, f ′;x)−M(f)| < ε

for all x ∈ G since

M(Aa−1, f ′;x) =
1

n

n∑
k=1

f ′(xaka
−1) =

1

n

n∑
k=1

f(xak) = M(A, f ;x).

Hence M(f) is also a right mean of f ′, i.e.∫
f(xa) dx =

∫
f(x) dx

and (H4) holds.
Suppose then that

∫ ∗
: C(G) → R satisfies the properties (H1)–(H5). We’ll

show that
∫ ∗

=
∫

. Indeed let f ∈ C(G) and choose ε > 0. Then there exists a
finite sequence A of elements of G so that

|M(A, f ;x)−M(f)| < ε

holds for all x ∈ X. Now in the lectures we have shown that we have the triangle
inequality for integrals, so that∣∣∣∣∫ ∗ f(x) dx−M(f)

∣∣∣∣ =

∣∣∣∣∫ ∗M(A, f ;x) dx−M(f)

∣∣∣∣
≤
∫ ∗
|M(A, f ;x)−M(f)| dx < ε,

which (because ε was arbitrary) shows that
∫ ∗

f(x) dx = M(f) =
∫
f(x) dx. �
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