0.1 Bounded and Compact operators

For a given inner-product space V', a linear operator T : V' — V is called bounded (with respect
to a given norm) if there exists a constant C' such that for all v, ||T'(v)|| < C||v]||. In this case the
smallest such C' is denoted |T'|. It is easy to see from the definitions that the following holds:
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A bounded operator T is said to be compact if for a sequence vy, va,... such that ||v;|| < 1 Vi,
the sequence T'(v1),T(v2), ..., has a convergent subsequence.

T is said to be symmetric if (T (v),w) = (v, T(w)).

Lemma 1. If T :V — V is a bounded symmetric compact operator then:
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Proof. Let B denote the right-hand side of the given equation. By the Schwartz inequality we get
that for any v # 0:

(T (@), o) < IT@)] [[o]] < |T] [[o]]* = |Tl{v,v),

which gives us
(T _ gy
(v,0)

and so B < |T.
On the other hand, we assume T'(v) # 0 and k is some positive constant, since we know that
T is symmetric we have:

(T(kv+ k™ 'T(v)), kv + k™' (v)) = (T(kv), kv) + 2(T (kv), k' T(v)) + (T(k'T(v)), k' T (v))
= (T(kv), kv) + 2(T(v), T(v)) + (T(k~'T(v)), k' T(v))

(T(kv — k7'T(v)), kv — k71T (v)) = (T'(kv), kv) — 2(T'(v), T(v)) + (T(k~'T(v)), kT (v)).

By definition, for all v # 0 we have that % < B and so |[(T'(v),v)| < B {(v,v). Combining
the equations above we get

T (v), T(v)) = (T(kv + k' T(v)), kv + k™ 'T(v)) — (T (kv — k' T(v)), kv — k1T (v))
< T (kv + k1T (v)), kv + k= T (0))| + (T (kv — k= T(v)), kv — k1T (v))|
< Blkv+ k7 'T(v), kv + kT (v)) + Blkv — k' T(v), kv — kT (v))
< B(2k*(v,v) + 2k~ 3(T(v), T(v)))
= 2B(k*(v,v) + k= *(T(v), T(v)))
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We now let k = (”ﬂff“)”) , and obtain:

AT W)II* = 4T (v), T(v)) < 2B2||T()]| - [v]])
1T (v)[] < BlJv]l.
We conclude that |T| = B, as claimed. O



Lemma 2. If T is a bounded symmetric compact operator at least one of |T|, —|T| is an eigenvalue
forT.

Proof. From the previous lemma we can deduce that there is a sequence of unit vectors v; such
that [(T'(v;),v;)] — |T|. From this we obtain a subsequence such that (T'(v;),v;) — A = £[T.
Also since T is a compact operator we may assume that T'(v;) converges to some vector w. We
will show that v; — A~ 1w.

By the Schwartz inequality we have

(T (vi), vi) | < T (W)ll [Joil| = [T (oa)[| < [T [Jvsl| = [Al,

but we know that [(T'(v;),v;)| — |A, so we conclude that |T'(v;)| — |A|. Consider the quantity

||)\Uz - T(’Uz)Hz = <)\Ui — T(’Ui), )\’Ui — T(Uz)>
= NJoil* — 2X(T(vi), vi) + ||IT(v) |
= A2+ A\ =0.

Since we know T'(v;) — w, we also have that Av; — w and so we write v; — v = A lw. By
continuity T'(v) = lim T'(v;) = w = Av, so we have proved that v is an eigenvector with eigenvalue
A O

Lemma 3. Let T : V. — V be a compact operator. If A # 0 is an eigenvalue of T we define
Vi={v eV |T()=Av}. For any given r > 0, then
W = span{Vy | A > r} is finite dimensional.

Proof. Suppose W is not finite dimensional, then there exists a countable orthonormal subset
{en}. Since T is a compact operator and that ||e,|| = 1, the sequence {T'(e1),T(ez2),...} has a
convergent subsequence.

However, we know that T'(e,) = A\pen, with A, > r, so for n # m,

IT(en) = T(em)l1? = [Anen — Ameml® = [[Anenl|* + [ Ameml|? = AL + A7, > 202,
which contradicts the previous statement. O

From this result we conclude that every maximal orthonormal set of non-zero eigenvectors is
countable. We arrange such set in a sequence (e,,) with the extra requirement that if ¢ < j and \;
and A; are the eigenvalues for e;, e;, then A; > A;. Also from now on, we will assume 7 : V — V
is a symmetric compact bounded operator.

Lemma 4. FEvery eigenvector with a non-zero eigenvalue is a finite linear combination of vectors
in (en).

Proof. Let A # 0 and v be said eigenvalue and eigenvector. We know that there are only finitely
many n’s such that e, has characteristic value A; we denote this set of values by S,. Let

w=7v— Z (v, en) en,
neSx

First, note that as a linear combination of eigenvectors corresponding to A, w is one itself; if we
can show that w = 0, the proof will be complete. For i € S},

(w,e;) = (v,e;) — Z (v,en){en, ;) = (v, e;) — (v,e;) = 0.

nesSx



On the other hand, if ¢ ¢ Sy then we have T'(e;) = pe; with A # pu:

Mw, ei) = Aw, ei) = (T(w), &) = (w, T(e:)) = (w, pes) = plw, e;).

From this we conclude that (g — X\){(w,e;) = 0 and so (w,e;) = 0. Now, w must be zero, for
otherwise this will contradict the maximality of (e,,).
O

0.2 Compact Groups

For the remaining part of the paper we will let G be a compact group and V = Map (G, R). For
consistency we will use f,g € V and z,y,2 € G.

Definition Let ¢ € V we define Ty, : V — V as

z) = /G o(zy™) f(y)dy

Lemma 5. T, is well-defined, linear and continuous. Also if ¢(z) = ¢(z~1) for all x € G, then
Ty is symmetric.

Proof. Well-definedness, linearity and continuity were proved in the homework.
Suppose ¢(z) = ¢p(z~ 1) for all x € G, then

To).0) = | oD@tz = [ [ oy 1wy gla)da
//fbwyl )g(x) dy da

(. Tolg /f \To(g dy—/f /¢ym1 ) dz dy

- / / o((zy™) ) (w)g) do dy
GJaG

But we know that ¢((zy~!)~") = ¢(zy~') and, if h(x,y) is continuous then [, [, h(z,y)dzdy =
Jo Jo P, y)dydx, so (Ty(f),g9) = (f, Ty(g)), and T}, is symmetric. O

Definition We define the following three norms in V:

Il = /G () d,
Ml = VIR = [ f@) (@i,

= [[flloc = sup |f()].
zeCG
We showed in the exercises that the following inequalities hold.

Al < M1 f1l2 < 11 llsos
To(N)lloo < 8llsc||f1]1-



Next, we recall the following (weaker version) of a result that we will need.

Theorem 1. (Arzela-Ascoli theorem) Let G be a compact topological group. If A is a uniformly
equicontinuous and uniformly bounded family of functions G — R, then every subsequence of
functions f; € A contains a uniformly convergent subsequence.

Lemma 6. T is a bounded and compact operator with respect to || - ||2.

Proof. We proved in the homework that ||Ty(f)|]l2 < ||@]]sc||f]]2; S0 Ty is bounded.
Let {f1, f2,...} be a sequence of functions such that ||f;||2 < 1,Vi. Let A be the family of
functions {Ty(f1),Tp(f2),...}. Then, for any = € G,i € n,

1T (fi) (@) < |1 Ts(Fllso < [10l]oolfill1 < [18]|oc-

So A is uniformly bounded. On the other hand, ¢ is continuous and G compact so ¢ is
uniformly continuous. Let € > 0, then let U be a neighborhood of the identity such that if &k € U
then |¢p(kg) — ¢(g)| < €. For any i, we have that

Ts(fi)(kg) = To(fi)(9)] =

/ (0(kgh™) = &(gh™")) fi(h) dh‘ < / |6(kgh™") — o(gh™ )| | fi(R)] dh
G G
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Now we have shown that A is uniformly continuous and uniformly bounded, by the Arzela-
Ascoli theorem, the sequence {Ty(f1), T(f2), ...} contains a convergent subsequence with respect
to || - ||co and therefore also with respect to || - ||2. We conclude that T} is a compact operator. [

We now recall the result known as the Bessel Inequality; if {e,, | n € B} is a set of orthonormal
vectors in V', then for any f € V

D (fren) < (1f112)

neB

The proof is as follows, consider the following non-negative quantity

(||f_ Z<fven>en||2)2 = <f - Z<f7€n>en ) f_ Z<f’ en>en>

neB neB neB
=(f,f)—2 Z<faen><f;en> + Z Z (fsen)(f, em)(en,em)
neB neB meB
= (Ifll2)> =2 (fren)® + D (fren)”
neB neB
= (Ifll2)* = D _{fren)* =20
neB

Which concludes the proof.



For the following theorem we revert to using 7' for the compact operator, since this is a more
general result.

Theorem 2. Forany f € V welet f, =T(3_, <, (f,en)en). The sequence |[T(f)— fy||co converges
to 0. -

Proof. In homework problem 11.3 we showed the first of the following inequalities;

1/2

1fg = folloo = IT Z (fren)en | lloo < [T Z (fren)en|| = Z (fren)”

p<n<gq p<n<gq 9 p<n<p

1/2
However, (Zp<n<f, en>2) / is bounded by || f||2 (this follows from the Bessel inequality), and
so the quantity on the right, approaches 0 as p and ¢ become large. Hence the sequence (f)
is Cauchy and converges to an element g of V. If we can show that ¢ = T'(f) the proof will be
complete. Note, however, that we have shown that we can make the quantity ||g— fp|l2 < |lg— fpllco

as small as we want.
We define T, : V. — V as

Ty(u) = T(u) = Y _(en, u)T(en).

Note that T),(f) = T'(f) = >_, <, (f.en)T(en) = T(f) — fp. So now, all we have to show is that |7,
converges to 0 as p becomes large. It is clear that T}, is bounded and compact because so is T It
is also symmetric:

(To(f),9) = (T(f) = D_{f.en)T(en) )

= <f7 T(g)> - Z<fﬂ €n><T(€n),g>
= <f7T(g)> - Z)‘n<f’ en><g’en>

(. To(9)) = (£, T(g) = D_(g:ea)T(en))

= <f’ T(g)> - Z<gaen><T(6n)a.f>
= <faT(g)> - Z )\n<gaen><f7 6n>.

By lemma 3, there must exists some u, € V such that T'(up) = Apup, and A, = £[T,|. If A, =0
we are finished, otherwise, we note that for m < p;

(up, en) = 1/A (Tp(up), em)
= 1/A (up, Tp(em))
= 1//\ (up,T(em) - Z<€ma en>T(en)>

n<p

=1/X (up, T(em) —T(em)) = 0.



This means that T, (u,) = T'(up) = A\pup. We have shown that u, is an eigenvalue for 7" and

so by lemma 3, we can write u, = >, g (Up,€n)en. But then;
p

0 # Apup =T (up) =T(up) — Z<up>en>T(en)

n<p

=T D (uprenten | = (up,en)Ten)

neSx, n<p
= Z (up, en)T(en) — Z<up7en>T(en)
TLES)\D n<p

This means that there is some n € Sy, that is greater than p.

In summary, we have shown that if we choose a p, we obtain u,, A, and subsequently some e,,,
with T},(e,,) = Ape, such that n > p.

Now we let € > 0, and consider all the e,’s such that |A,| > €, (which we know to be finitely
many from lemma 3); we choose pg greater than all these n’s, in other words, if n > p then |\, | < e.
By what we proved above we obtain wuy,, Ap, and e, such that T, (e,) = Ay e, and n > p, which
implies |A,| <e.

So we have shown that |T),,| < e. We use this to show that we can make

T () = Solle < Tp(Hll2 < [TT ]2

as small as we want. Therefore, since

g =T (N2 = llg = fplla + 11fpy = T(f)]]2,
we have that ||g — T'(f)||2 = 0 and the g = T'(f).

O
Lemma 7. The A—eigenspace
V(A) ={f eVITo(f) = Af}
is invariant under R, for all z € G.
Proof. Lef f be such that Ty (f) = Af. Then
Ty(R(N)(a) = [ ey RNy = [ olay™ ) Fl2)dy.
G G
We make the change of variables y — yz~! and obtain
/G¢(fﬂzy’1)f(y)dy =Ty(f)(22) = R=(To(f)) () = AR=(f) ().
So R.(f) e V(N). O

Lemma 8. Let G be a compact group, and U a neighborhood of the identity. Then we can find a
function ¢ supported in U, such that ¢(z) = ¢p(x~1), Vo € G, and fG o(x) de = 1.



Proof. We first define V' an open neighborhood of the identity such that V = V~! c U. G is
compact and Hausdorff, also {e} and G\V are closed and so, by Urysohn’s Lemma, we obtain a
function ¢” : G — R such that

¢"(e) =1,¢"(y) =0, Vy ¢ V.

We next define a function ¢’ : G — R as ¢/(x) = ¢’ (x) + ¢""(x71). Tt is clear that ¢'(z) = ¢'(—x).
Finally, we define
¢'(x)

Then, ¢ is the desired function:

— For y ¢ U we know that y,y~! ¢ V, and so we have that

P+

o(y) L9 dz

:0,

so ¢ is supported in U.

— Finally,

[ dw
/ng(x) dx/c:f(;¢’(2) P d 1.
O

The last thing we will need in order to prove the Peter-Weyl theorem is the following fact,
which was proved in homework 9.3.

If the vector subspace of V' spanned by {R,(f) | = € G} is finite dimensional, then f is a matriz
representation.

This is completes all the prerequisites we need to prove our main result.

Theorem 3. (Peter-Weyl Theorem) Let G be a compact group, then the matrixz coefficients of
G are dense in V.

Proof. Let f € V and ¢ > 0. We will show that there exists a matrix coefficient f’ such that
1f = flloe <€

Since G is compact, f is uniformly continuous, and so we can find U, an open symmetric
neighborhood of the identity such that, if € U such that

1Lz (f) = flloo < €/2.

(Note, this was proved in homework 7.3.) By lemma 8, we can find ¢ € V, supported in U and
such that

z) = ¢z 1Y), an x) axr = 1.
o) = ola™), and [ 6(o) do =1

We thus obtain Ty : V' — V, which is symmetric and compact. We claim that ||T,(f) — flloc < €/2.
For any z € G,



T(0)a) = @) = | [ @le )10 v~ [ o)) dy]

< / 6(0) f(u'2) — () (z)| dy
G

= [ s = 1@ ay
= [ otwlr ) - @)
< /U )Ly (F) = flloo dy
< /U o(y)(e/2) dy = €/2.

By theorem 1, we can choose p so that

ITo(F) = Folloe < 5-

Recall that
fp :Td? Z<fa en>en = Z<f7en>>‘nen>

n<p n<p

and notice that it is contained in a finite dimensional vector space, which, by lemma 7 is closed
under right translation, we conclude that f, is a matrix coefficient
Finally,

f = Flloe = If = To(f) + To(f) = folloo < M = To(Nlloe +1T6(f) = folloo <€

We will now show some applications of the theorem as the following two corollaries.

Corollary 1. Suppose G is a compact group, H a closed subgroup and U a neighborhood of e.
Then, there exists a finite dimensional linear G-space V and v € V' such that

HcdG, cUH.

Proof. G/H is compact and Hausdorff, so by Urysohn’s Lemma, there exists a continuous function
f:G/H — I =10,1] such that

— fleH) =0,

— fly) =1, Yy ¢ n(UH).

We define f' = for: G — I and consider the following statements:
1. f/(h) =0, Vh e H,

2. f(x)=1, Vx ¢ UH,

3. Rnf=f, VheH



Statements 1 and 2 are trivial, and 3 follows because 7(zh) = w(x).

By the Peter-Weyl theorem we find f” : G — R, a matriz coefficient such that |(f" — f')(z)] <
€, Yr € G. Unfortunately f” does not necessarily satisfy the given conditions, but it does have
some useful properties.

1. Forall he H, f"(h) < f'(h) + e=¢€. Forx ¢ UH
2. Forallz ¢ UH, f"(z) > f'(x) —e=1—¢.

3. Unfortunately, there is nothing like property 3 that applies to f”, so we must define yet
another function.

Welet f:G— 1 as f(x / f"(zh") dh'. Since f” is a matrix coefficient, so is f.

1. For h,h' € H, we show that f(h) = [, f"(hh') dW < [, e=e.
2. For x ¢ UH, we show that f(z fo”xh dW' > [pl-—e=1-e
3. For z € G, h € H we show that f(zh) = [, f"(zhh') dW' = [, f"(zh') dh = f(z).

Consider the action R : G x V; — V;, we will show that V; and f € V; satisfy the conclusion
of the theorem:

— Firstly, since f is a matrix coefficient, we know V% is finite dimensional.
— For any h € H, we showed R(h, f) = Ry f = f, so H C Gy.

— For © ¢ UH consider R, f(e) = f(z) > 1—¢, but f(e) < ¢, since e € H. If we also require
that € < 1/2, this shows that ¢ Gy, and so Gy C UH.

O

Corollary 2. Suppose G is a compact group, U is an open neighborhood of the identity. Then
there exists a linear representation ¢ : G — O(n), for some n € N such that Ker(¢) C U

Proof. By applying corollary 1 to H = {e} we obtain ¢ : G — (V') such that for some
veV, Ker(vp) c G, CU.
We showed in lectures (pdf 1 p.38) that ¢ is equivalent to an orthogonal representation
¢ : G — O(n), which satisfies all the conditions of the corollary. O

For the next corollary we will need the following definition. We say that a compact group G
has no small subgroups, is there exists a neighborhood U of the identity such that no non-trivial
subgroups are contained in U.

Corollary 3. Let G be a compact group that has no small subgroups. Then G is homeomorphic
so a subgroup of O(n) for some n.

Proof. We let U be the neighborhood of identity defined in the previous definition, and set H = e.
Then, by the previous corollary we find a representation f : G — O(n) such that Ker(f) C U, so

by our choice of U we deduce that Ker(f) is trivial, and f is an injection.
O



