0.1 Bounded and Compact operators

For a given inner-product space V, a linear operator $T: V \rightarrow V$ is called bounded (with respect to a given norm) if there exists a constant C such that for all $v,\|T(v)\| \leq C\|v\|$. In this case the smallest such C is denoted $|T|$. It is easy to see from the definitions that the following holds:

$$
|T|=\sup _{0 \neq v \in V}\left(\frac{\|T(v)\|}{\|v\|}\right)
$$

A bounded operator T is said to be compact if for a sequence v_{1}, v_{2}, \ldots such that $\left\|v_{i}\right\| \leq 1 \forall i$, the sequence $T\left(v_{1}\right), T\left(v_{2}\right), \ldots$, has a convergent subsequence.
T is said to be symmetric if $\langle T(v), w\rangle=\langle v, T(w)\rangle$.
Lemma 1. If $T: V \rightarrow V$ is a bounded symmetric compact operator then:

$$
|T|=\sup _{0 \neq v \in V}\left(\frac{\langle T(v), v\rangle}{\langle v, v\rangle}\right) .
$$

Proof. Let B denote the right-hand side of the given equation. By the Schwartz inequality we get that for any $v \neq 0$:

$$
|\langle T(v), v\rangle| \leq\|T(v)\|\|v\| \leq|T|\|v\|^{2}=|T|\langle v, v\rangle
$$

which gives us

$$
\frac{|\langle T(v), v\rangle|}{\langle v, v\rangle} \leq|T|
$$

and so $B \leq|T|$.
On the other hand, we assume $T(v) \neq 0$ and k is some positive constant, since we know that T is symmetric we have:

$$
\begin{aligned}
\left\langle T\left(k v+k^{-1} T(v)\right), k v+k^{-1} T(v)\right\rangle & =\langle T(k v), k v\rangle+2\left\langle T(k v), k^{-1} T(v)\right\rangle+\left\langle T\left(k^{-1} T(v)\right), k^{-1} T(v)\right\rangle \\
& =\langle T(k v), k v\rangle+2\langle T(v), T(v\rangle)+\left\langle T\left(k^{-1} T(v)\right), k^{-1} T(v)\right\rangle \\
\left\langle T\left(k v-k^{-1} T(v)\right), k v-k^{-1} T(v)\right\rangle & =\langle T(k v), k v\rangle-2\langle T(v), T(v)\rangle+\left\langle T\left(k^{-1} T(v)\right), k^{-1} T(v)\right\rangle
\end{aligned}
$$

By definition, for all $v \neq 0$ we have that $\frac{|\langle T(v), v\rangle|}{\langle v, v\rangle} \leq B$ and so $|\langle T(v), v\rangle| \leq B\langle v, v\rangle$. Combining the equations above we get

$$
\begin{aligned}
4\langle T(v), T(v)\rangle & =\left\langle T\left(k v+k^{-1} T(v)\right), k v+k^{-1} T(v)\right\rangle-\left\langle T\left(k v-k^{-1} T(v)\right), k v-k^{-1} T(v)\right\rangle \\
& \leq\left|\left\langle T\left(k v+k^{-1} T(v)\right), k v+k^{-1} T(v)\right\rangle\right|+\left|\left\langle T\left(k v-k^{-1} T(v)\right), k v-k^{-1} T(v)\right\rangle\right| \\
& \leq B\left\langle k v+k^{-1} T(v), k v+k^{-1} T(v)\right\rangle+B\left\langle k v-k^{-1} T(v), k v-k^{-1} T(v)\right\rangle \\
& \leq B\left(2 k^{2}\langle v, v\rangle+2 k^{-2}\langle T(v), T(v)\rangle\right) \\
& =2 B\left(k^{2}\langle v, v\rangle+k^{-2}\langle T(v), T(v)\rangle\right)
\end{aligned}
$$

We now let $k=\left(\frac{\|T(v)\|}{\|v\|}\right)^{1 / 2}$, and obtain:

$$
\begin{gathered}
4\|T(v)\|^{2}=4\langle T(v), T(v)\rangle \leq 2 B(2\|T(v)\| \cdot\|v\|) \\
\|T(v)\| \leq B\|v\|
\end{gathered}
$$

We conclude that $|T|=B$, as claimed.

Lemma 2. If T is a bounded symmetric compact operator at least one of $|T|,-|T|$ is an eigenvalue for T.

Proof. From the previous lemma we can deduce that there is a sequence of unit vectors v_{i} such that $\left|\left\langle T\left(v_{i}\right), v_{i}\right\rangle\right| \rightarrow|T|$. From this we obtain a subsequence such that $\left\langle T\left(v_{i}\right), v_{i}\right\rangle \rightarrow \lambda= \pm|T|$. Also since T is a compact operator we may assume that $T\left(v_{i}\right)$ converges to some vector w. We will show that $v_{i} \rightarrow \lambda^{-1} w$.

By the Schwartz inequality we have

$$
\left|\left\langle T\left(v_{i}\right), v_{i}\right\rangle\right| \leq\left\|T\left(v_{i}\right)\right\|\left\|v_{i}\right\|=\left\|T\left(v_{i}\right)\right\| \leq|T|\left\|v_{i}\right\|=|\lambda|
$$

but we know that $\left|\left\langle T\left(v_{i}\right), v_{i}\right\rangle\right| \rightarrow \mid \lambda$, so we conclude that $\left|T\left(v_{i}\right)\right| \rightarrow|\lambda|$. Consider the quantity

$$
\begin{aligned}
\left\|\lambda v_{i}-T\left(v_{i}\right)\right\|^{2} & =\left\langle\lambda v_{i}-T\left(v_{i}\right), \lambda v_{i}-T\left(v_{i}\right)\right\rangle \\
& =\lambda^{2}\left\|v_{i}\right\|^{2}-2 \lambda\left\langle T\left(v_{i}\right), v_{i}\right\rangle+\left\|T\left(v_{i}\right)\right\|^{2} \\
& \rightarrow \lambda^{2}-2 \lambda \lambda+\lambda^{2}=0
\end{aligned}
$$

Since we know $T\left(v_{i}\right) \rightarrow w$, we also have that $\lambda v_{i} \rightarrow w$ and so we write $v_{i} \rightarrow v=\lambda^{-1} w$. By continuity $T(v)=\lim T\left(v_{i}\right)=w=\lambda v$, so we have proved that v is an eigenvector with eigenvalue λ.

Lemma 3. Let $T: V \rightarrow V$ be a compact operator. If $\lambda \neq 0$ is an eigenvalue of T we define $V_{\lambda}=\{v \in V \mid T(v)=\lambda v\}$. For any given $r>0$, then $W=\operatorname{span}\left\{V_{\lambda} \mid \lambda \geq r\right\}$ is finite dimensional.

Proof. Suppose W is not finite dimensional, then there exists a countable orthonormal subset $\left\{e_{n}\right\}$. Since T is a compact operator and that $\left\|e_{n}\right\|=1$, the sequence $\left\{T\left(e_{1}\right), T\left(e_{2}\right), \ldots\right\}$ has a convergent subsequence.

However, we know that $T\left(e_{n}\right)=\lambda_{n} e_{n}$, with $\lambda_{n} \geq r$, so for $n \neq m$,

$$
\left\|T\left(e_{n}\right)-T\left(e_{m}\right)\right\|^{2}=\left\|\lambda_{n} e_{n}-\lambda_{m} e_{m}\right\|^{2}=\left\|\lambda_{n} e_{n}\right\|^{2}+\left\|\lambda_{m} e_{m}\right\|^{2}=\lambda_{n}^{2}+\lambda_{m}^{2} \geq 2 r^{2}
$$

which contradicts the previous statement.
From this result we conclude that every maximal orthonormal set of non-zero eigenvectors is countable. We arrange such set in a sequence $\left(e_{n}\right)$ with the extra requirement that if $i<j$ and λ_{i} and λ_{j} are the eigenvalues for e_{i}, e_{j}, then $\lambda_{i} \geq \lambda_{j}$. Also from now on, we will assume $T: V \rightarrow V$ is a symmetric compact bounded operator.

Lemma 4. Every eigenvector with a non-zero eigenvalue is a finite linear combination of vectors in $\left(e_{n}\right)$.

Proof. Let $\lambda \neq 0$ and v be said eigenvalue and eigenvector. We know that there are only finitely many n 's such that e_{n} has characteristic value λ; we denote this set of values by S_{λ}. Let

$$
w=v-\sum_{n \in S_{\lambda}}\left\langle v, e_{n}\right\rangle e_{n},
$$

First, note that as a linear combination of eigenvectors corresponding to λ, w is one itself; if we can show that $w=0$, the proof will be complete. For $i \in S_{\lambda}$,

$$
\left\langle w, e_{i}\right\rangle=\left\langle v, e_{i}\right\rangle-\sum_{n \in S_{\lambda}}\left\langle v, e_{n}\right\rangle\left\langle e_{n}, e_{i}\right\rangle=\left\langle v, e_{i}\right\rangle-\left\langle v, e_{i}\right\rangle=0
$$

On the other hand, if $i \notin S_{\lambda}$ then we have $T\left(e_{i}\right)=\mu e_{i}$ with $\lambda \neq \mu$:

$$
\lambda\left\langle w, e_{i}\right\rangle=\left\langle\lambda w, e_{i}\right\rangle=\left\langle T(w), e_{i}\right\rangle=\left\langle w, T\left(e_{i}\right)\right\rangle=\left\langle w, \mu e_{i}\right\rangle=\mu\left\langle w, e_{i}\right\rangle
$$

From this we conclude that $(\mu-\lambda)\left\langle w, e_{i}\right\rangle=0$ and so $\left\langle w, e_{i}\right\rangle=0$. Now, w must be zero, for otherwise this will contradict the maximality of $\left(e_{n}\right)$.

0.2 Compact Groups

For the remaining part of the paper we will let G be a compact group and $V=\operatorname{Map}(G, \mathbb{R})$. For consistency we will use $f, g \in V$ and $x, y, z \in G$.

Definition Let $\phi \in V$ we define $T_{\phi}: V \rightarrow V$ as

$$
T_{\phi}(f)(x)=\int_{G} \phi\left(x y^{-1}\right) f(y) d y
$$

Lemma 5. T_{ϕ} is well-defined, linear and continuous. Also if $\phi(x)=\phi\left(x^{-1}\right)$ for all $x \in G$, then T_{ϕ} is symmetric.

Proof. Well-definedness, linearity and continuity were proved in the homework.
Suppose $\phi(x)=\phi\left(x^{-1}\right)$ for all $x \in G$, then

$$
\begin{gathered}
\left\langle T_{\phi}(f), g\right\rangle=\int_{G} T_{\phi}(f)(x) g(x) d x=\int_{G} \int_{G} \phi\left(x y^{-1}\right) f(y) d y g(x) d x \\
=\int_{G} \int_{G} \phi\left(x y^{-1}\right) f(y) g(x) d y d x \\
\left\langle f, T_{\phi}(g)\right\rangle=\int_{G} f(y) T_{\phi}(g)(y) d y=\int_{G} f(y) \int_{G} \phi\left(y x^{-} 1\right) g(x) d x d y \\
=\int_{G} \int_{G} \phi\left(\left(x y^{-1}\right)^{-1}\right) f(y) g(x) d x d y
\end{gathered}
$$

But we know that $\phi\left(\left(x y^{-1}\right)^{-1}\right)=\phi\left(x y^{-1}\right)$ and, if $h(x, y)$ is continuous then $\int_{G} \int_{G} h(x, y) d x d y=$ $\int_{G} \int_{G} h(x, y) d y d x$, so $\left\langle T_{\phi}(f), g\right\rangle=\left\langle f, T_{\phi}(g)\right\rangle$, and T_{ϕ} is symmetric.

Definition We define the following three norms in V :
$-\|f\|_{1}=\int_{G}|f(x)| d x$,
$-\|f\|_{2}=\sqrt{\langle f, f\rangle}=\sqrt{\int_{G} f(x) f(x) d x}$,
$-\|f\|_{\infty}=\sup _{x \in G}|f(x)|$.
We showed in the exercises that the following inequalities hold.

$$
\begin{gathered}
\|f\|_{1} \leq\|f\|_{2} \leq\|f\|_{\infty} \\
\left\|T_{\phi}(f)\right\|_{\infty} \leq\|\phi\|_{\infty}\|f\|_{1}
\end{gathered}
$$

Next, we recall the following (weaker version) of a result that we will need.
Theorem 1. (Arzelà-Ascoli theorem) Let G be a compact topological group. If Δ is a uniformly equicontinuous and uniformly bounded family of functions $G \rightarrow \mathbb{R}$, then every subsequence of functions $f_{i} \in \Delta$ contains a uniformly convergent subsequence.

Lemma 6. T_{ϕ} is a bounded and compact operator with respect to $\|\cdot\|_{2}$.
Proof. We proved in the homework that $\left\|T_{\phi}(f)\right\|_{2} \leq\|\phi\|_{\infty}\|f\|_{2}$, so T_{ϕ} is bounded.
Let $\left\{f_{1}, f_{2}, \ldots\right\}$ be a sequence of functions such that $\left\|f_{i}\right\|_{2} \leq 1, \forall i$. Let Δ be the family of functions $\left\{T_{\phi}\left(f_{1}\right), T_{\phi}\left(f_{2}\right), \ldots\right\}$. Then, for any $x \in G, i \in n$,

$$
\left|T_{\phi}\left(f_{i}\right)(x)\right| \leq\left\|T_{\phi}(f)\right\|_{\infty} \leq\|\phi\|_{\infty}\left\|f_{i}\right\|_{1} \leq\|\phi\|_{\infty}
$$

So Δ is uniformly bounded. On the other hand, ϕ is continuous and G compact so ϕ is uniformly continuous. Let $\epsilon>0$, then let U be a neighborhood of the identity such that if $k \in U$ then $|\phi(k g)-\phi(g)|<\epsilon$. For any i, we have that

$$
\begin{gathered}
\left|T_{\phi}\left(f_{i}\right)(k g)-T_{\phi}\left(f_{i}\right)(g)\right|= \\
\left|\int_{G}\left(\phi\left(k g h^{-1}\right)-\phi\left(g h^{-1}\right)\right) f_{i}(h) d h\right| \leq \int_{G}\left|\phi\left(k g h^{-1}\right)-\phi\left(g h^{-1}\right)\right|\left|f_{i}(h)\right| d h \\
\leq \int_{g} \epsilon\left|f_{i}(h)\right| d h \leq \epsilon\left|f_{i}\right|_{1} \leq \epsilon
\end{gathered}
$$

Now we have shown that Δ is uniformly continuous and uniformly bounded, by the ArzelàAscoli theorem, the sequence $\left\{T_{\phi}\left(f_{1}\right), T_{\phi}\left(f_{2}\right), \ldots\right\}$ contains a convergent subsequence with respect to $\|\cdot\|_{\infty}$ and therefore also with respect to $\|\cdot\|_{2}$. We conclude that T_{ϕ} is a compact operator.

We now recall the result known as the Bessel Inequality; if $\left\{e_{n} \mid n \in B\right\}$ is a set of orthonormal vectors in V, then for any $f \in V$

$$
\sum_{n \in B}\left\langle f, e_{n}\right\rangle^{2} \leq\left(\|f\|_{2}\right)^{2}
$$

The proof is as follows, consider the following non-negative quantity

$$
\begin{aligned}
\left(\left\|f-\sum_{n \in B}\left\langle f, e_{n}\right\rangle e_{n}\right\|_{2}\right)^{2} & =\left\langle f-\sum_{n \in B}\left\langle f, e_{n}\right\rangle e_{n}, f-\sum_{n \in B}\left\langle f, e_{n}\right\rangle e_{n}\right\rangle \\
& =\langle f, f\rangle-2 \sum_{n \in B}\left\langle f, e_{n}\right\rangle\left\langle f, e_{n}\right\rangle+\sum_{n \in B} \sum_{m \in B}\left\langle f, e_{n}\right\rangle\left\langle f, e_{m}\right\rangle\left\langle e_{n}, e_{m}\right\rangle \\
& =\left(\|f\|_{2}\right)^{2}-2 \sum_{n \in B}\left\langle f, e_{n}\right\rangle^{2}+\sum_{n \in B}\left\langle f, e_{n}\right\rangle^{2} \\
& =\left(\|f\|_{2}\right)^{2}-\sum_{n \in B}\left\langle f, e_{n}\right\rangle^{2} \geq 0
\end{aligned}
$$

Which concludes the proof.

For the following theorem we revert to using T for the compact operator, since this is a more general result.

Theorem 2. For any $f \in V$ we let $f_{p}=T\left(\sum_{n \leq p}\left\langle f, e_{n}\right\rangle e_{n}\right)$. The sequence $\left\|T(f)-f_{p}\right\|_{\infty}$ converges to 0 .

Proof. In homework problem 11.3 we showed the first of the following inequalities;

$$
\left\|f_{q}-f_{p}\right\|_{\infty}=\left\|T\left(\sum_{p<n \leq q}\left\langle f, e_{n}\right\rangle e_{n}\right)\right\|_{\infty} \leq|T|\left\|_{p<n \leq q}\left\langle f, e_{n}\right\rangle e_{n}\right\|_{2}=\left(\sum_{p<n \leq p}\left\langle f, e_{n}\right\rangle^{2}\right)^{1 / 2}
$$

However, $\left(\sum_{p<n}\left\langle f, e_{n}\right\rangle^{2}\right)^{1 / 2}$ is bounded by $\|f\|_{2}$ (this follows from the Bessel inequality), and so the quantity on the right, approaches 0 as p and q become large. Hence the sequence $\left(f_{p}\right)$ is Cauchy and converges to an element g of V. If we can show that $g=T(f)$ the proof will be complete. Note, however, that we have shown that we can make the quantity $\left\|g-f_{p}\right\|_{2} \leq\left\|g-f_{p}\right\|_{\infty}$ as small as we want.

We define $T_{p}: V \rightarrow V$ as

$$
T_{p}(u)=T(u)-\sum_{n \leq p}\left\langle e_{n}, u\right\rangle T\left(e_{n}\right)
$$

Note that $T_{p}(f)=T(f)-\sum_{n \leq p}\left\langle f, e_{n}\right\rangle T\left(e_{n}\right)=T(f)-f_{p}$. So now, all we have to show is that $\left|T_{p}\right|$ converges to 0 as p becomes large. It is clear that T_{p} is bounded and compact because so is T. It is also symmetric:

$$
\begin{aligned}
\left\langle T_{p}(f), g\right\rangle & =\left\langle T(f)-\sum_{n \leq p}\left\langle f, e_{n}\right\rangle T\left(e_{n}\right), g\right\rangle \\
& =\langle f, T(g)\rangle-\sum_{n \leq p}\left\langle f, e_{n}\right\rangle\left\langle T\left(e_{n}\right), g\right\rangle \\
& =\langle f, T(g)\rangle-\sum_{n \leq p} \lambda_{n}\left\langle f, e_{n}\right\rangle\left\langle g, e_{n}\right\rangle \\
\left\langle f, T_{p}(g)\right\rangle & =\left\langle f, T(g)-\sum_{n \leq p}\left\langle g, e_{n}\right\rangle T\left(e_{n}\right)\right\rangle \\
& =\langle f, T(g)\rangle-\sum_{n \leq p}\left\langle g, e_{n}\right\rangle\left\langle T\left(e_{n}\right), f\right\rangle \\
& =\langle f, T(g)\rangle-\sum_{n \leq p} \lambda_{n}\left\langle g, e_{n}\right\rangle\left\langle f, e_{n}\right\rangle .
\end{aligned}
$$

By lemma 3, there must exists some $u_{p} \in V$ such that $T\left(u_{p}\right)=\lambda_{p} u_{p}$, and $\lambda_{p}= \pm\left|T_{p}\right|$. If $\lambda_{p}=0$ we are finished, otherwise, we note that for $m \leq p$;

$$
\begin{aligned}
\left\langle u_{p}, e_{n}\right\rangle & =1 / \lambda\left\langle T_{p}\left(u_{p}\right), e_{m}\right\rangle \\
& =1 / \lambda\left\langle u_{p}, T_{p}\left(e_{m}\right)\right\rangle \\
& =1 / \lambda\left\langle u_{p}, T\left(e_{m}\right)-\sum_{n \leq p}\left\langle e_{m}, e_{n}\right\rangle T\left(e_{n}\right)\right\rangle \\
& =1 / \lambda\left\langle u_{p}, T\left(e_{m}\right)-T\left(e_{m}\right)\right\rangle=0 .
\end{aligned}
$$

This means that $T_{p}\left(u_{p}\right)=T\left(u_{p}\right)=\lambda_{p} u_{p}$. We have shown that u_{p} is an eigenvalue for T and so by lemma 3 , we can write $u_{p}=\sum_{n \in S_{\lambda_{p}}}\left\langle u_{p}, e_{n}\right\rangle e_{n}$. But then;

$$
\begin{aligned}
0 \neq \lambda_{p} u_{p}=T\left(u_{p}\right) & =T\left(u_{p}\right)-\sum_{n \leq p}\left\langle u_{p}, e_{n}\right\rangle T\left(e_{n}\right) \\
& =T\left(\sum_{n \in S_{\lambda_{p}}}\left\langle u_{p}, e_{n}\right\rangle e_{n}\right)-\sum_{n \leq p}\left\langle u_{p}, e_{n}\right\rangle T\left(e_{n}\right) \\
& =\sum_{n \in S_{\lambda_{p}}}\left\langle u_{p}, e_{n}\right\rangle T\left(e_{n}\right)-\sum_{n \leq p}\left\langle u_{p}, e_{n}\right\rangle T\left(e_{n}\right)
\end{aligned}
$$

This means that there is some $n \in S_{\lambda_{p}}$ that is greater than p.
In summary, we have shown that if we choose a p, we obtain u_{p}, λ_{p} and subsequently some e_{n}, with $T_{p}\left(e_{n}\right)=\lambda_{p} e_{n}$ such that $n>p$.

Now we let $\epsilon>0$, and consider all the e_{n} 's such that $\left|\lambda_{n}\right|>\epsilon$, (which we know to be finitely many from lemma 3); we choose p_{0} greater than all these n 's, in other words, if $n \geq p$ then $\left|\lambda_{n}\right| \leq \epsilon$. By what we proved above we obtain $u_{p_{0}}, \lambda_{p_{0}}$ and e_{n} such that $T_{p_{0}}\left(e_{n}\right)=\lambda_{p_{0}} e_{n}$ and $n>p$, which implies $\left|\lambda_{n}\right| \leq \epsilon$.

So we have shown that $\left|T_{p_{0}}\right| \leq \epsilon$. We use this to show that we can make

$$
\left\|T(f)-f_{p}\right\|_{2} \leq\left\|T_{p}(f)\right\|_{2} \leq|T|\|f\|_{1}
$$

as small as we want. Therefore, since

$$
\|g-T(f)\|_{2}=\left\|g-f_{p}\right\|_{2}+\left\|f_{p}-T(f)\right\|_{2}
$$

we have that $\|g-T(f)\|_{2}=0$ and the $g=T(f)$.

Lemma 7. The λ-eigenspace

$$
V(\lambda)=\{f \in V \mid T \phi(f)=\lambda f\}
$$

is invariant under R_{z} for all $z \in G$.
Proof. Lef f be such that $T_{\phi}(f)=\lambda f$. Then

$$
T_{\phi}\left(R_{z}(f)\right)(x)=\int_{G} \phi\left(x y^{-1}\right) R_{z}(f)(y) d y=\int_{G} \phi\left(x y^{-1}\right) f(y z) d y
$$

We make the change of variables $y \rightarrow y z^{-1}$ and obtain

$$
\int_{G} \phi\left(x z y^{-1}\right) f(y) d y=T_{\phi}(f)(x z)=R_{z}\left(T_{\phi}(f)\right)(x)=\lambda R_{z}(f)(x)
$$

So $R_{z}(f) \in V(\lambda)$.

Lemma 8. Let G be a compact group, and U a neighborhood of the identity. Then we can find a function ϕ supported in U, such that $\phi(x)=\phi\left(x^{-1}\right), \forall x \in G$, and $\int_{G} \phi(x) d x=1$.

Proof. We first define V an open neighborhood of the identity such that $V=V^{-1} \subset U . G$ is compact and Hausdorff, also $\{e\}$ and $G \backslash V$ are closed and so, by Urysohn's Lemma, we obtain a function $\phi^{\prime \prime}: G \rightarrow \mathbb{R}$ such that

$$
\phi^{\prime \prime}(e)=1, \phi^{\prime \prime}(y)=0, \forall y \notin V
$$

We next define a function $\phi^{\prime}: G \rightarrow \mathbb{R}$ as $\phi^{\prime}(x)=\phi^{\prime \prime}(x)+\phi^{\prime \prime}\left(x^{-1}\right)$. It is clear that $\phi^{\prime}(x)=\phi^{\prime}(-x)$. Finally, we define

$$
\phi(x)=\frac{\phi^{\prime}(x)}{\int_{G} \phi^{\prime}(z) d z} .
$$

Then, ϕ is the desired function:

- For $y \notin U$ we know that $y, y^{-1} \notin V$, and so we have that

$$
\phi(y)=\frac{\phi^{\prime \prime}(y)+\phi^{\prime \prime}\left(y^{-1}\right)}{\int_{G} \phi^{\prime}(z) d z}=0
$$

so ϕ is supported in U.

- Finally,

$$
\int_{G} \phi(x) d x=\int_{G} \frac{\phi^{\prime}(x)}{\int_{G} \phi^{\prime}(z) d z} d x=1
$$

The last thing we will need in order to prove the Peter-Weyl theorem is the following fact, which was proved in homework 9.3.

If the vector subspace of V spanned by $\left\{R_{x}(f) \mid x \in G\right\}$ is finite dimensional, then f is a matrix representation.

This is completes all the prerequisites we need to prove our main result.

Theorem 3. (Peter-Weyl Theorem) Let G be a compact group, then the matrix coefficients of G are dense in V.

Proof. Let $f \in V$ and $\epsilon>0$. We will show that there exists a matrix coefficient f^{\prime} such that $\left\|f-f^{\prime}\right\|_{\infty}<\epsilon$.

Since G is compact, f is uniformly continuous, and so we can find U, an open symmetric neighborhood of the identity such that, if $x \in U$ such that

$$
\left\|L_{x}(f)-f\right\|_{\infty}<\epsilon / 2
$$

(Note, this was proved in homework 7.3.) By lemma 8, we can find $\phi \in V$, supported in U and such that

$$
\phi(x)=\phi\left(x^{-1}\right), \text { and } \int_{G} \phi(x) d x=1
$$

We thus obtain $T_{\phi}: V \rightarrow V$, which is symmetric and compact. We claim that $\left\|T_{\phi}(f)-f\right\|_{\infty}<\epsilon / 2$. For any $x \in G$,

$$
\begin{aligned}
\left|T_{\phi}(f)(x)-f(x)\right| & =\mid \int_{G}\left(\phi\left(x y^{-1}\right) f(y) d y-\int_{G} \phi(y) f(x) d y \mid\right. \\
& \leq \int_{G}\left|\phi(y) f\left(y^{-1} x\right)-\phi(y) f(x)\right| d y \\
& =\int_{G} \phi(y)\left|f\left(y^{-1} x\right)-f(x)\right| d y \\
& =\int_{U} \phi(y)\left|f\left(y^{-1} x\right)-f(x)\right| d y \\
& \leq \int_{U} \phi(y)\left\|L_{y^{-1}}(f)-f\right\|_{\infty} d y \\
& \leq \int_{U} \phi(y)(\epsilon / 2) d y=\epsilon / 2 .
\end{aligned}
$$

By theorem 1, we can choose p so that

$$
\left\|T_{\phi}(f)-f_{p}\right\|_{\infty}<\frac{\epsilon}{2} .
$$

Recall that

$$
f_{p}=T_{\phi}\left(\sum_{n \leq p}\left\langle f, e_{n}\right\rangle e_{n}\right)=\sum_{n \leq p}\left\langle f, e_{n}\right\rangle \lambda_{n} e_{n},
$$

and notice that it is contained in a finite dimensional vector space, which, by lemma 7 is closed under right translation, we conclude that f_{p} is a matrix coefficient

Finally,

$$
\left\|f-f^{\prime}\right\|_{\infty}=\left\|f-T_{\phi}(f)+T_{\phi}(f)-f_{p}\right\|_{\infty} \leq\left\|f-T_{\phi}(f)\right\|_{\infty}+\left\|T_{\phi}(f)-f_{p}\right\|_{\infty} \leq \epsilon .
$$

We will now show some applications of the theorem as the following two corollaries.
Corollary 1. Suppose G is a compact group, H a closed subgroup and U a neighborhood of e. Then, there exists a finite dimensional linear G-space V and $v \in V$ such that

$$
H \subset G_{v} \subset U H
$$

Proof. G / H is compact and Hausdorff, so by Urysohn's Lemma, there exists a continuous function $\tilde{f}: G / H \rightarrow I=[0,1]$ such that
$-\tilde{f}(e H)=0$,

- $\tilde{f}(y)=1, \forall y \notin \pi(U H)$.

We define $f^{\prime}=\tilde{f} \circ \pi: G \rightarrow I$ and consider the following statements:

1. $f^{\prime}(h)=0, \forall h \in H$,
2. $f^{\prime}(x)=1, \forall x \notin U H$,
3. $R_{h} f=f, \forall h \in H$

Statements 1 and 2 are trivial, and 3 follows because $\pi(x h)=\pi(x)$.
By the Peter-Weyl theorem we find $f^{\prime \prime}: G \rightarrow \mathbb{R}$, a matrix coefficient such that $\left|\left(f^{\prime \prime}-f^{\prime}\right)(x)\right|<$ $\epsilon, \forall x \in G$. Unfortunately $f^{\prime \prime}$ does not necessarily satisfy the given conditions, but it does have some useful properties.

1. For all $h \in H, f^{\prime \prime}(h)<f^{\prime}(h)+\epsilon=\epsilon$. For $x \notin U H$
2. For all $x \notin U H, f^{\prime \prime}(x)>f^{\prime}(x)-\epsilon=1-\epsilon$.
3. Unfortunately, there is nothing like property 3 that applies to $f^{\prime \prime}$, so we must define yet another function.

We let $f: G \rightarrow I$ as $f(x)=\int_{H} f^{\prime \prime}\left(x h^{\prime}\right) d h^{\prime}$. Since $f^{\prime \prime}$ is a matrix coefficient, so is f.

1. For $h, h^{\prime} \in H$, we show that $f(h)=\int_{H} f^{\prime \prime}\left(h h^{\prime}\right) d h^{\prime}<\int_{H} \epsilon=\epsilon$.
2. For $x \notin U H$, we show that $f(x)=\int_{H} f^{\prime \prime}(x h) d h^{\prime}>\int_{H} 1-\epsilon=1-\epsilon$.
3. For $x \in G, h \in H$ we show that $f(x h)=\int_{H} f^{\prime \prime}\left(x h h^{\prime}\right) d h^{\prime}=\int_{H} f^{\prime \prime}\left(x h^{\prime}\right) d h=f(x)$.

Consider the action $R: G \times V_{f} \rightarrow V_{f}$, we will show that V_{f} and $f \in V_{f}$ satisfy the conclusion of the theorem:

- Firstly, since f is a matrix coefficient, we know V_{f} is finite dimensional.
- For any $h \in H$, we showed $R(h, f)=R_{h} f=f$, so $H \subset G_{f}$.
- For $x \notin U H$ consider $R_{x} f(e)=f(x)>1-\epsilon$, but $f(e)<\epsilon$, since $e \in H$. If we also require that $\epsilon<1 / 2$, this shows that $x \notin G_{f}$, and so $G_{f} \subset U H$.

Corollary 2. Suppose G is a compact group, U is an open neighborhood of the identity. Then there exists a linear representation $\phi: G \rightarrow O(n)$, for some $n \in \mathbb{N}$ such that $\operatorname{Ker}(\phi) \subset U$

Proof. By applying corollary 1 to $H=\{e\}$ we obtain $\psi: G \rightarrow(V)$ such that for some $v \in V, \operatorname{Ker}(\psi) \subset G_{v} \subset U$.

We showed in lectures (pdf 1 p .38) that ψ is equivalent to an orthogonal representation $\phi: G \rightarrow O(n)$, which satisfies all the conditions of the corollary.

For the next corollary we will need the following definition. We say that a compact group G has no small subgroups, is there exists a neighborhood U of the identity such that no non-trivial subgroups are contained in U.

Corollary 3. Let G be a compact group that has no small subgroups. Then G is homeomorphic so a subgroup of $O(n)$ for some n.

Proof. We let U be the neighborhood of identity defined in the previous definition, and set $H=e$. Then, by the previous corollary we find a representation $f: G \rightarrow O(n)$ such that $\operatorname{Ker}(f) \subset U$, so by our choice of U we deduce that $\operatorname{Ker}(f)$ is trivial, and f is an injection.

