
1 Twisted products

Suppose G1 and G2 are topological groups and X is a space, such that G1 acts on X
from the left and G2 acts on X from the right. We also assume that these two actions
commute i.e.

g(xg′) = (gx)g′

for all g ∈ G1, g
′ ∈ G2 and x ∈ X.

In this case we say that X is a G1 −G1 bispace.

Example 1.1. Group G acts on itself by multiplication both from the left and on the
right and these actions obviously commute since

g(xh) = (gx)h

for all g, x, h ∈ G (this is just a reformulation of associativity of the multiplication).
Hence G is a G−G bispace in a natural way.
More generally if H,K are subgroups of G then G is an H −K bispace in an obvious
way.

Remark 1.2. Any G-space X can be considered as a G − {e} bispace, where trivial
group {e} acts on X in the only possible way from the right. Likewise if X is a right
G-space, it can be thought of as an {e} −G bispace.

Suppose G1, G2, . . . , Gn+1 are topological groups, n ≥ 1 and Gi − Gi+1 bispace Xi is
given for every i = 1, . . . , n. We de�ne a (left) action of the product group G2×. . .×Gn

on the product space X1 ×X2 . . . Xn de�ned by

(g2, g3, . . . , gn)(x1, x2, . . . , xn) = (x1g
−1
2 , g2x2g

−1
3 , . . . , gixig

−1
i+1, . . . , gnxn).

The orbit space of this action is denoted

X1 ×
G2

X2 ×
G3

X3 ×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn

and called the twisted product of bispaces X1, . . . , Xn.
The class of the element (x1, x2, . . . , xn) in the twisted product X1×

G2

X2×
G3

X3×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn will be denoted as

[x1, x2, . . . , xn].

Twisted product X1 ×
G2

X2X
G33

. . . X
Gn+1n

has a canonical structure of G1−Gn+1-bispace.

Precisely put we de�ne action of G1 on X1 ×
G2

X2 ×
G3

X3 ×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn by the

formula
g[x1, x2, . . . , xn] = [gx1, x2, . . . , xn].

This action is well-de�ned, since X1 is a G1 −G2 bispace, so

[gx1, x2, . . . , xn] = [g(x1g
−1
2 ), g2x2g

−1
3 , . . . , gnxn].



It is easy to check that it satis�es the algebraic properties of action. Finally the
continuity of this action follows from the commutative diagram

G1 × (X1 ×X2 . . . Xn) Φ′ //

id×π
��

X1 ×X2 . . . Xn

π

��
G1 × (X1 ×

G2

X2 ×
G3

X3 ×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn) Φ // X1 ×
G2

X2 ×
G3

X3 ×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn

in a usual manner. Here Φ is G-action de�ned above, Φ′ is a mapping de�ned by

Φ′(g, x1, . . . , xn) = (gx1, x2, . . . , xn),

so obviously continuous. Since id×π is open and surjective, it is quotient.

Similarly we de�ne right action of Gn+1 on X1 ×
G2

X2 ×
G3

X3 ×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn by

the formula
[x1, . . . , xn, xn+1] · g = [x1, . . . , xn, xn+1g].

In the same way, as for the G1-action, one checks that this action is well-de�ned and
continuous right action of Gn+1. It is also easy to see that left action of G1 and right
action of Gn+1 commute, so twisted product X1 ×

G2

X2 ×
G3

X3 ×
G4

. . . ×
Gn−1

Xn−1 ×
Gn

Xn is

a G1 −Gn+1 bispace.

2 Induced G-space

Suppose G is a topological group, H closed subgroup of G and X is an H-space. We
apply the construction of twisted products in the special case, where we consider G
an G−H bispace and X an H−{e}-bispace. Hence G acts on itself by multiplication
on the left and H acts on G by multiplication from the right,

g · h = gh−1.

By the general construction above we obtain a twisted product G×
H
X, which is thus

an orbit space of G×X with respect to the action of H de�ned by

h(g, x) = (gh−1, hx).

Elements of G×
H
X will be denoted as [g, x]. Notice that for any h ∈ H we have

[g, hx] = [gh, x].

Since we consider G to be a left G-space, G×
H
X is a G-space, with action of G de�ned

by
g[g′, x] = [gg′, x].
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There is a natural H-mapping i : X → G×
H
X de�ned by i(x) = [e, x]. It is obviously

continuous and to check that it is H-equivariant we observe that

i(hx) = [e, hx] = [h, x] = h[e, x] = hi(x).

The pair (G ×
H
X, i) is called induced G-space of the H-space X. We often abuse

notation and also call the G-space G×
H
X an induced G-space of X.

Examples 2.1. 1.Suppose G = S1 and H = {1,−1} = Z2. H acts on X = [0, 1] by

(−1) · x = 1− x.

The space G ×
H
X is homeomorphic to the Möbius band, which, thus, has a structure

of G-space. The veri�cation of this claim and the description of the S1-action on the
Möbius band de�ned by this description is left to the reader as an exercise.

2. Similarly if we take G and H as above and let H act on X = S1 by

(−1) · z = z̄ = z−1,

then the induced space G×
H
X is Klein's bottle.

The mapping i : X → G×
H
X is always injective. To verify this suppose x, y ∈ X and

[e, x] = [e, y]. This means that there is an h ∈ H such that (e, x) = h(e, y) = (h−1, hy).
This implies that h = e, so x = hy = y.
Mapping i is, thus, an injective continuous mapping, but in general it need not to be
imbedding.

Proposition 2.2. Suppose X is Hausdor� G-space, where G is locally compact. Then
G×

H
X is Hausdor�. Moreover if H is compact, G×

H
X is Palais proper G-space and

mapping i : X → G×
H
X is a closed embedding.

Proof. Action of H on G, h ·g = gh−1 is Borel proper, since for any compact subspace
K of G we have

H(K|K) = {h ∈ H | hK ∩K 6= ∅} = H ∩KK−1,

which is compact, since H is closed. Since G is locally compact, Theorem 2.8 in [1]
implies that this action is also Palais proper. It is easy to check that if X is Palais
proper H-space and Y is arbitrary H-space, then diagonal action g(x, y) = (gx, gy) on
X × Y is Palais proper. Hence action of H on G×H is Palais proper, so the induced
space G×

H
X is Hausdor� by Proposition 2.4. in [1].

Suppose H is compact. Then canonical projection p : G×X → G×
H
X is closed, so its
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restriction to closed subset {(e, x) | x ∈ X} is closed. Also the embedding x 7→ (e, x)
is a closed embedding. Hence their composition, which happens to be exactly i, is
closed.
The second projection G × X → G composed with canonical projection G → G/H
de�nes a continuous mapping f : G ×X → G/H. This mapping factors through the
orbit space G×

H
X, since

f(gh−1, hx) = gh−1H = gH = f(g, x).

Thus we obtain a well-de�ned continuous mapping f̄ : G×
H
X → G/H de�ned by

f̄ [g, x] = gH.

This mapping is G-equivariant, because

f̄(g′[gx]) = f̄ [g′gx] = g′gH = g′(gH).

Now since H is compact, G/H is Borel proper (exercise 10.1). Since G (hence also
G/H) is locally compact, Proposition 2.8 in [1] implies that G/H is Palais proper
G-space. Since there exists a G-map f̄ : G×

H
X → G/H, Proposition 2.8 in [1] implies

that also G×
H
X is Palais proper.

Remark 2.3. More generally it can be shown that i : X → G ×
H
X is embedding

also if canonical projection π : G → G/H has a local cross-section, i.e. there exists
a neighbourhood U of eH in G/H and continuous mapping s : U → G such that
π ◦ s = idU (see exercises). For example if G is a Lie group and H a closed subgroup
of G, projection π : G → G/H always has a local cross-section. The proof of this
extremely important property of Lie groups requires di�erential geometry, so we don't
have a possibility to go through it.

Induced G-space satis�es the important universal property de�ned below.

De�nition 2.4. Suppose X is an H-space, where H is a closed subgroup of a topolog-
ical group G. The pair (Y, j), where Y is a G-space and j : X → Y an H-mapping is
called universal G-space for X if for every G-space X ′ and H-mapping f : X → X ′

there exists unique G-mapping f̄ : Y → X ′ such that f = f̄ ◦ j.
In other words the diagram

X
f

  
j
��
Y

f̄ // X ′

commutes and f̄ is the only mapping that makes it commute.

Universal G-space always exist and is unique up to a canonical G-homeomorphism.
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Proposition 2.5. Suppose X is an H-space as above. Then the pair (G×
H
X, i) is a

universal G-space for X. Moreover if (Y, j) is another universal G-space there exists
unique G-homeomorphism k : G×

H
X → Y such that k ◦ i = j. This homemorphism is

de�ned by the formula
k[g, x] = gj(x).

Proof. Suppose X ′ is an arbitrary G-space and f : X → X ′ is an H-mapping. Suppose
f̄ : G×

H
X → X ′ is G-mapping such that f̄ ◦ i = f . Then for all g ∈ G, x ∈ X we have

f̄([g, x]) = f̄(g[e, x]) = gf̄ [e, x] = gf̄(i(x)) = gf(x).

Hence f̄ is unique. To show existence let us de�ne f̄ : G ×
H
X → X ′ by the formula

above,
f̄([g, x]) = gx.

We need to show that f̄ is well-de�ned. Suppose h ∈ H. Then

f̄([gh−1, hx]) = (gh−1)hx = gx = f̄([g, x]).

Hence f̄ is well-de�ned. It is evidently continuous, since f̄ ◦p = k, where k : G×X →
X ′, k(g, x) = gf(x) is clearly continuous and canonical projection p : G×X → G×

H
X

is a quotient mapping.
f̄ is clearly G-mapping,

f̄(g′[g, x]) = f̄([g′g, x]) = (g′g)x = g′(gx) = g′f([g, x])

and f̄(i(x)) = f̄([e, x]) = ex = x for all x ∈ X.
Hence (G×

H
X, i) is a universal G-space for X.

Suppose (Y, j) is a universal G-space for X. Then in particular j : X → Y is H-
mapping to a G-space X, so there exists unique j̄ : G ×

H
X → Y , such that j̄ ◦ i = j.

Likewise, since (Y, j) is a universal G-space for X and i : X → G×
H
X is an H-mapping,

there exists unique ī : Y → G×
H
X such that ī ◦ j = i.

Notice that by the explicit construction we have above j̄ is de�ned by the formula

j̄([g, x]) = gj(x).

Consider the mapping δ = ī ◦ j̄ : G×
H
X → G×

H
X. This is a G-mapping and δ ◦ i = i,

because
δ ◦ i = ī ◦ j̄ ◦ i = ī ◦ j = i.

But on the other hand identity mapping id : G ×
H
X → G ×

H
X is also a G-mapping

that clearly has property id ◦i = i. Since such a mapping is unique (by de�nition of
universal G-mapping) we must have ī ◦ j̄ = δ = id.
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Similarly if we consider mapping σ = j̄ ◦ ī ◦ Y → Y , we see that σ is a G-mapping
such that σ ◦ j = j. Since id : Y → Y have the same properties and Y is a universal
G-space, we have that j̄ ◦ ī = σ = id.

We have shown that j̄ and ī are inverses of each other. In particular they are both
G-homeomorphisms.

Induced space is a " transitive" construction.

Proposition 2.6. Suppose G is a topological group, H,K subgroups of G and H ⊂ K.
Suppose X is an H-space. Then there is a canonical G-homeomorphism f : G×

K
(K ×

H

X))→ G×
H
X de�ned by

f([g, [k, x]]) = [gk, x], g ∈ G, k ∈ K, x ∈ X.

Proof. Let j : X → G×
K

(K×
H
X)) be de�ned by j(x) = [e, [e, x]]. Then j is continuous

H-mapping. Let us show that the pair (G ×
K

(K ×
H
X)), j) is a universal G-mapping

for H-space X. Suppose α : X → X ′ is an H-map, where X ′ is a G-space. Since X ′

is in particular K-space there exists unique K-mapping ᾱ : K ×
H
X → X ′ such that

ᾱ ◦ i = α, where i : X → K ×
H
X, i(x) = [e, x]. Moreover

ᾱ[k, x] = kα(x)

for all k ∈ K, x ∈ X.
Now ᾱ is a K-mapping into G-space X ′, so there exists unique mapping ¯̄α : G×

K
(K ×

H

X)) → X ′ such that ¯̄α ◦ i′ = ᾱ, where i′ : K ×
H
X → G ×

K
(K ×

H
X)) de�ned by

i′([k, x]) = [e, [k, x]]. Moreover by construction we have

¯̄α([g, [k, x]) = gᾱ([k, x]) = gkα(x).

Now simple calculation veri�es that ¯̄α ◦ j = α, since i′ ◦ i = j.

We need to show uniqueness of ¯̄α. Suppose β : G ×
K

(K ×
H
X)) → X ′ is a G-mapping

such that β ◦ j = α. Then

β([g, [k, x]]) = β(g[e, [k, x]]) = gβ([e, [k, x]) = gβ([e, k[e, x]]) =

= gβ([k, [e, x]] = gβ(k[e, [e, x]]) = gkβ(j(x)) = gkα(x).

Hence β = ¯̄α is unique.

We have shown that the pair (G×
K

(K ×
H
X), j) is a universal G-mapping for H-space

X. By the previous proposition there exists unique G-homeomorphism f ′ : G×
H
X →

G×
K

(K ×
H
X) and

f ′([g, x]) = gj(x) = g[e, [e, x]] = [g, [e, x]].
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It remains to show that f de�ned above is inverse to f ′. We have

f(f ′([g, x])) = f([g, [e, x]]) = [ge, x] = [g, x],

f ′(f([g, [k, x]])) = f ′([gk, x]) = [gk, [e, x]] = [g, k[e, x]] = [g, [k, x]].

Lemma 2.7. Suppose H acts trivially on X. Then G×
H
X is canonically G-homeomorphic

to G/H ×X, with G-homeomorphism being [g, x] 7→ (gH, x).
In particular if Z is a one-point space, then G×

H
Z ∼= G/H.

Proof. (Easy) exercise.

Proposition 2.8. Suppose H,K are subgroups of a topological group G and H ⊂ K.
Then the mapping f : G×

K
K/H → G/H, f([g, kH]) = gkH is a G-homeomorphism.

Proof. Let Z = {z} be one-point space (considered as H-space). Previous lemma and
Proposition 2.6 imply that there are G-homeomorphisms

G×
K
K/H ∼= G×

K
(K ×

H
Z) ∼= G×

H
Z ∼= G/H.

Moreover if you trace the explicit G-homeomorphisms from the proofs above, you will
get f as a concrete G-homeomorphism.

The induced space has the same orbit space as the original space.

Proposition 2.9. Suppose X is an H-space, where H is a closed subgroup of a topo-
logical group G. Then the canonical H-mapping i : X → G ×

H
X, i(x) = [e, x] de�nes

a homeomorphism ĩ : X/H ∼= (G×
H
X)/G between orbit spaces.

Proof. Consider the composite mapping p ◦ i : X → (G ×
H
X)/G, where p : G ×

H
X →

(G×
H
X)/G is a canonical projection. It is clearly continuous. Also p◦i factors through

the orbit space X/H, since for all x ∈ X, h ∈ H we have

p(i(hx)) = G[e, hx] = G[h, x] = Gh[e, x] = G[e, x] = p(i(x)).

Hence there is induced continuous mapping ĩ : X/H ∼= (G×
H
X)/G.

The composition of the second projection G × X → X and canonical projection
X → X/H is a continuous mapping j : G×X → X/H, (g, x) 7→ Hx. Suppose h ∈ H.
Then

j(gh−1, hx) = Hhx = Hx,

so j factors through G ×
H
X, hence de�nes a continuous mapping j̄ : G ×

H
X → X/H.

Finally for any g′ ∈ G

j̄(g′[g, x]) = j̄([g′g, x]) = Hx = j̄([g, x]),
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so j̄ factors through the orbit space (G×
H
X)/G and hence de�nes a continuous mapping

j̃ : (G×
H
X)/G→ X/H de�ned by j̃(G[g, x]) = Hx.

Now
j̃ ◦ ĩ(Hx) = j̃(G[e, x]) = Hx,

ĩ ◦ j̃(G[g, x]) = ĩ(Hx) = G[e, x] = G[g, x]

for all g ∈ G, x ∈ X. Hence j̃ is a continuous inverse of ĩ, so the latter is a homeo-
morphism.

Proposition 2.10. Suppose K is a closed subgroup of a topological group G and H
is a normal closed subgroup of K. Let X be a K-space, such that the restricted action
of H on X is trivial. Then the mapping f : G ×

K
X → (G/H) ×

K/H
X de�ned by

f([g, x]) = [gH, x] is a G-homeomorphism.
Here we consider G/H a G−K/H-bispace.

Proof. Notice that since H acts trivially on X, there is a well-de�ned canonical action
of K/H on X de�ned by kH · x = kx, hence X can be considered anK/H-space.
The fact that G/H is a left G-space is well-known. Let us check that also the right
action of K/H on G/H de�ned by (gH) · (kH) = gkH is well-de�ned. Suppose
h, h′ ∈ H. Then

(gh)(kh′)H = g(hkh′)H = ghkH = gkh′′H = gkH

for some h′′ ∈ H, since H is normal in K. Continuity of this action is checked in the
usual manner and the fact that left G-action and right K/H-action commute is easy
to verify.

Continuity of f follows as usual - it is a mapping induced by the mapping (g, x) 7→
[gH, x] which is clearly continuous, one only needs to verify that f is well-de�ned.
Suppose k ∈ K. Then

f([gk−1, kx]) = [gk−1H, kx] = [gH · (kH)−1, (kH)x] = [gH, x] = f([g, x]).

To de�ne an inverse mapping f ′ : (G/H) ×
K/H

X → G×
K
X we �rst consider canonical

projection p : G × X → G ×
K
X and show that it induced well-de�ned continuous

mapping p′ : G/H ×X → G×
K
X. Suppose g′ = gh for some h ∈ H. Then

p(g′, x) = [g′, x] = [gh, x] = [g, hx] = [g, x],

since H ⊂ K and H acts trivially on X. Hence p′ exists. Since π × id : G × X →
G/H×X is a quotient mapping (it is a product of open surjections) and p′◦(π×id) = p
is continuous, it follows that p′ is continuous.
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Next we show that p′ factors through the quotient space (G/H) ×
K/H

X. Suppose

kH ∈ K/H. Then

p′((gH·kH−1, (kH)x)) = p′(gk−1H, kx) = p(gk−1, kx) = [gk−1, kx] = [g, x] = p′(gH, x).

Hence there is a well-de�ned continuous mapping f ′ : (G/H) ×
K/H

X → G×
K
X, de�ned

by the formula
f ′[gH, x] = [g, x].

f and f ′ are clearly inverses of each other. Also for instance f is G-mapping:

f(g[g′, x]) = f([gg′, x]) = [gg′H, x] = g[g′H, x].

Corollary 2.11. Suppose H is a closed subgroup of a topological space G and X is a
G-space. Then

G ×
N(H)

XH ∼= G/H ×
N(H)/H

XH .

as G-spaces.

Proof. XH is an N(H)-space, and the restricted action of H on XH is trivial, so the
previous proposition applies.

Consider the inclusion ι : XH ↪→ X, where X is a G-space and H is a closed subgroup
of G. Then ι is N(H)-equivariant, so by the universal property of induced G-space
there is continuous G-mapping f : G ×

N(H)
XH → X, de�ned by f([g, x]) = gx for all

g ∈ G, x ∈ X. Since by the previous corollary there is a G-homeomorphism

G ×
N(H)

XH ∼= G/H ×
N(H)/H

XH ,

so there is also a G-mapping f ′ : G/H ×
N(H)/H

XH → X de�ned by f ′([gH, x]) = gx.

Theorem 2.12. Suppose G is a compact group, H its closed subgroup and X a G-
space, such that only one isotropy type [H] occurs at X. Then both f : G ×

N(H)
XH → X

and f ′ : G/H ×
N(H)/H

XH → X are G-homeomorphisms.

Proof. Enough to prove that f is a homeomorphism. We �rst show that f is surjective.
Suppose x ∈ X. Then [Gx] = [H], so there exists g ∈ G such that Gx = gHg−1. It
follows that

Gg−1x = g−1Gxg = H,

so y = g−1x ∈ XH and
f([g, y]) = gy = x.
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Thus f is a surjection.
Next we prove f is an injection.
Suppose [g, x], [g′, x′] ∈ G ×

N(H)
XH such that f([g, x]) = gx = g′x′ = f([g′, x′]). Let

n = g′−1g, then nx = x′, so
H ⊂ Gx′ = nGxn

−1,

since x′ ∈ XH . By assumptions Gx is conjugate to H. Since G is compact, by Lemma
1.15 in [4] this implies that in n ∈ N(H). Hence

[g, x] = [g′n, x] = [g′, nx] = [g′, x′].

We have shown that f is bijection.

Since G is compact, the action mapping Φ: G × X → X is closed (Theorem 1.9 in
[2]). Since XH is closed, the restricted mapping φ = Φ| : G × XH → X is closed.
Now by de�nition of f we have that f ◦ π = φ, so φ is surjective (since f is). As a
surjective closed mapping, it is a quotient mapping. Here π : G ×XH → G ×

N(H)
XH

is a canonical projection, hence quotient. It follows that the induced mapping f is a
homeomorphism.

The meaning of this theorem is that, under assumptions we made, the restricted action
of N(H) on the subspace XH contains all the information about the space.

Proposition 2.13. Suppose X, G and H are as in Theorem 2.12 above. Then inclu-
sion XH ↪→ X induces homeomorphism

XH/N(H) ∼= X/G

between orbit spaces.

Proof. By Proposition 2.9 inclusion XH ↪→ X induces a homeomorphism XH/H ∼=
(G ×

N(H)
XH)/G. On the other hand by the previous Theorem G ×

N(H)
XH ∼= X as

G-spaces, so also orbit spaces are homeomorphic, (G ×
N(H)

XH)/G ∼= X/G. Combining

these two result together yields the claim.
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