1 Twisted products

Suppose G and G, are topological groups and X is a space, such that G acts on X
from the left and G5 acts on X from the right. We also assume that these two actions
commaute i.e.

9(zg') = (gz)g
forall g € G1,9 € Gy and = € X.
In this case we say that X is a G; — G bispace.

Example 1.1. Group G acts on itself by multiplication both from the left and on the
right and these actions obviously commute since

g(zh) = (g )h

for all g,x,h € G (this is just a reformulation of associativity of the multiplication).
Hence G is a G — G bispace in a natural way.

More generally if H, K are subgroups of G then G is an H — K bispace in an obvious
way.

Remark 1.2. Any G-space X can be considered as a G — {e} bispace, where trivial
group {e} acts on X in the only possible way from the right. Likewise if X is a right
G-space, it can be thought of as an {e} — G bispace.

Suppose G1,Go, ..., G, are topological groups, n > 1 and G; — G, bispace Xj is
given for every i = 1,...,n. We define a (left) action of the product group Go x...xG,
on the product space X; x X5...X,, defined by

(92: 95, gu) (@1, @2, 20) = (2195, 92205, Giigiins - - -+ Gn'Tn)-
The orbit space of this action is denoted

XixXoxXgx ... x X,1 xX,
Go G3 Gy Gn-1 Gn

and called the twisted product of bispaces Xi,...,X,.

The class of the element (z1, s, ..., x,) in the twisted product X7 x Xo x X3 x ... X

G2 G3 G4 anl
X,—1 X X, will be denoted as
G

n

[T, X9, ..., Ty

Twisted product X; x XX ... X has a canonical structure of G; — G,,1-bispace.

Go Gsg Gnt1,,

Precisely put we define action of G; on X; x Xo x X3 x ... x X, ;1 x X, by the
Go Gs Gy Gn-1 Gn

formula
glry, xa, ... x| = [gx1, X2, - .., Ty

This action is well-defined, since X is a G; — G5 bispace, so

[gl‘l,ZEQ, S axn] = [g(xng_I)ngx?gS_l) s 7gnxn]



It is easy to check that it satisfies the algebraic properties of action. Finally the
continuity of this action follows from the commutative diagram

Gy x (X1 x Xa... X,) e X1 % Xo... X,

lid X ™

@
Gix(XixXoxXgx... X X, 1 xX,)—=X; xXoxXgx... x X, ; xX,
Go Gs Gy Gn-1 Gn Go Gs Gy Gn-1 Gn

in a usual manner. Here ® is G-action defined above, ®' is a mapping defined by
(g, 21,...,2,) = (921, T2, ..., 1),
so obviously continuous. Since id X7 is open and surjective, it is quotient.

Similarly we define right action of G417 on X7 x Xo x X3 x ... x X, 1 x X, by
G2 G3 Ga Gn-1 Gn

the formula
[T1, e Ty Tnga] - g = 21, Ty T g)-

In the same way, as for the (Gi-action, one checks that this action is well-defined and
continuous right action of G,,41. It is also easy to see that left action of (G; and right

action of G471 commute, so twisted product X; x Xy x X3 x ... x X, 1 x X, is
Ga G3 Gy Gn-1 n

a G1 — G471 bispace.

2 Induced G-space

Suppose G is a topological group, H closed subgroup of G and X is an H-space. We
apply the construction of twisted products in the special case, where we consider G
an G — H bispace and X an H — {e}-bispace. Hence G acts on itself by multiplication
on the left and H acts on G by multiplication from the right,

g-h=gh™.

By the general construction above we obtain a twisted product G x X, which is thus
H

an orbit space of G x X with respect to the action of H defined by
hg,w) = (gh™, ha).
Elements of G x X will be denoted as [g, z]. Notice that for any h € H we have
H
g, ha] = [gh, z].
Since we consider G to be a left G-space, G x X is a G-space, with action of G defined
H

by
glg’, z] = 94, x].
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There is a natural H-mapping i: X — G x X defined by i(z) = [e, x]. It is obviously
H

continuous and to check that it is H-equivariant we observe that
i(hx) = le, hx] = [h, 2] = hle, x| = hi(z).

The pair (G x X, i) is called induced G-space of the H-space X. We often abuse
H

notation and also call the G-space G x X an induced G-space of X.
H

Examples 2.1. 1.Suppose G = S' and H = {1,—1} = Zy. H acts on X =[0,1] by
(-1)-z=1—u.

The space G x X 1s homeomorphic to the Mdbius band, which, thus, has a structure
H

of G-space. The verification of this claim and the description of the S*-action on the
Mébius band defined by this description is left to the reader as an exercise.

2. Similarly if we take G and H as above and let H act on X = S* by

(1) -z=2=2"1,

then the induced space G x X 1is Klein’s bottle.
H

The mapping i: X — G x X is always injective. To verify this suppose x,y € X and
H

le, ] = [e,y]. This means that there is an h € H such that (e,z) = h(e,y) = (h™!, hy).
This implies that h = e, so x = hy = y.

Mapping ¢ is, thus, an injective continuous mapping, but in general it need not to be
imbedding.

Proposition 2.2. Suppose X is Hausdorff G-space, where G is locally compact. Then
G x X s Hausdorff. Moreover if H is compact, G x X is Palais proper G-space and
H H

mapping 1: X — G X X is a closed embedding.
H

Proof. Action of H on G, h-g = gh~! is Borel proper, since for any compact subspace
K of G we have

HK|K)={he H|hKNK #0}=HNKK™",

which is compact, since H is closed. Since G is locally compact, Theorem 2.8 in [1]
implies that this action is also Palais proper. It is easy to check that if X is Palais
proper H-space and Y is arbitrary H-space, then diagonal action g(z,vy) = (g, gy) on
X xY is Palais proper. Hence action of H on GG x H is Palais proper, so the induced
space G 1>1<r X is Hausdorff by Proposition 2.4. in [1].

Suppose H is compact. Then canonical projection p: G x X — G x X is closed, so its
H
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restriction to closed subset {(e,x) | x € X} is closed. Also the embedding = — (e, x)
is a closed embedding. Hence their composition, which happens to be exactly i, is
closed.

The second projection G x X — G composed with canonical projection G — G/H
defines a continuous mapping f: G x X — G//H. This mapping factors through the
orbit space G 1>j<r X, since

flgh™, hx) = gh™ H = gH = f(g,).
Thus we obtain a well-defined continuous mapping f: G x X — G/H defined by
H

flg,a] = gH.
This mapping is G-equivariant, because

f(g'lgz]) = flg'9x] = g'gH = ¢'(gH).

Now since H is compact, G/H is Borel proper (exercise 10.1). Since G (hence also

G/H) is locally compact, Proposition 2.8 in [1] implies that G/H is Palais proper

G-space. Since there exists a G-map f: G x X — G/H, Proposition 2.8 in [1| implies
H

that also G x X is Palais proper. O]
H

Remark 2.3. More generally it can be shown that i: X — G x X 1is embedding
H

also if canonical projection m: G — G/H has a local cross-section, i.e. there exists
a neighbourhood U of eH in G/H and continuous mapping s: U — G such that
mos=idy (see exercises). For example if G is a Lie group and H a closed subgroup
of G, projection 7: G — G/H always has a local cross-section. The proof of this
extremely important property of Lie groups requires differential geometry, so we don’t
have a possibility to go through it.

Induced G-space satisfies the important universal property defined below.

Definition 2.4. Suppose X is an H-space, where H is a closed subgroup of a topolog-
ical group G. The pair (Y, j), where Y is a G-space and j: X — Y an H-mapping is
called universal G-space for X if for every G-space X' and H-mapping f: X — X'
there exists unique G-mapping f: Y — X' such that f = foj.

In other words the diagram
e
J —

y Lo x/
commutes and f is the only mapping that makes it commute.

Universal G-space always exist and is unique up to a canonical G-homeomorphism.
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Proposition 2.5. Suppose X is an H-space as above. Then the pair (G x X,i) is a
H

universal G-space for X. Moreover if (Y,j) is another universal G-space there exists
unique G-homeomorphism k: G x X =Y such that koi = j. This homemorphism is
H
defined by the formula
klg, ] = gj().
Proof. Suppose X' is an arbitrary G-space and f: X — X'is an H-mapping. Suppose
f: G >< X — X' is G-mapping such that foi = f. Then for all g € G,z € X we have

f(lg. 7)) = f(gle.z]) = gfle,z] = gf(i(x)) = gf (x).

Hence f is unique. To show existence let us define f: G x X — X' by the formula,
H

above, B
f(g,x]) = gz
We need to show that f is well-defined. Suppose h € H. Then

f(lgh™ ha]) = (gh™")hx = gz = f([g,2]).
Hence f is well-defined. It is evidently continuous, since fop = k, where k: G x X —
X', k(g,z) = gf(x) is clearly continuous and canonical projection p: G x X — G x X
H

1S a quotient mapping.
f is clearly G-mapping,

f(dlg,z]) = f([g'9,2]) = (d'9)x = ¢'(92) = ¢'f([9.2])

and f(i(z)) = f

= f([e,z]) =ex =x for all z € X.
Hence (G ><X

(
) is a universal G-space for X.

Suppose (Y, 7) is a universal G-space for X. Then in particular j: X — Y is H-
mapping to a G-space X, so there exists unique j: G x X — Y, such that joi = j.
H
Likewise, since (Y, j) is a universal G-space for X and i: X — G x X is an H-mapping,
° - H
there exists unique 2: ¥ — G x X such that 10 j = 1.

H —
Notice that by the explicit construction we have above j is defined by the formula

i(lg, z]) = gi(2).
Consider the mapping 6 =i0j: G x X — G x X. This is a G-mapping and o7 = i,
because H_ ) H_
doi=10joi=10j =1.
But on the other hand identity mapping id: G 1>1<r X =G I>§ X is also a G-mapping

that clearly has property id oi = i. Since such a mapping is unique (by definition of
universal G-mapping) we must have 70 j = § = id.



Similarly if we consider mapping ¢ = joioY — Y, we see that o is a G-mapping
such that 0 o j = 7. Since id: Y — Y have the same properties and Y is a universal
G-space, we have that jo7 =0 = id.

We have shown that j and i are inverses of each other. In particular they are both
G-homeomorphisms. O
Induced space is a " transitive" construction.

Proposition 2.6. Suppose G is a topological group, H, K subgroups of G and H C K.
Suppose X is an H-space. Then there is a canonical G-homeomorphism f: G x (K X
K H

X)) — G x X defined by
H

f(lg: [k, 2]]) = [gk,2].g € G ke K,z € X.
Proof. Let j: X — G x (K x X)) be defined by j(x) = [e, [e, ]]. Then j is continuous
K H
H-mapping. Let us show that the pair (G x (K x X)), j) is a universal G-mapping
K H

for H-space X. Suppose a: X — X' is an H-map, where X’ is a G-space. Since X’
is in particular K-space there exists unique K-mapping a: K x X — X’ such that
H

aoi=q, where i: X - K x X, i(z) = [e,z]. Moreover
H
alk, x] = ka(x)

forall k € K,z € X.
Now @ is a K-mapping into G-space X', so there exists unique mapping a: G x (K X
K

H
X)) — X’ such that @ o4’ = &, where i': K x X — G x (K x X)) defined by
H K H
i'([k, z]) = le, [k, z]]. Moreover by construction we have
a(lg, [k, z]) = ga(lk, z]) = gka(z).

Now simple calculation verifies that & o j = «, since i’ o7 = j.

We need to show uniqueness of a. Suppose 3: G x (K x X)) — X' is a G-mapping
K H
such that g oj = a. Then

6([97 []C,CU]]) = B(g[ev [kal’“) = 95([67 [kv JJ]) = gﬁ([ev k[ev SL’H) =
= gB([k, [e, z]] = gB(kle, [e, z]]) = gkB(j(x)) = gka(x).

Hence 8 = a is unique.

We have shown that the pair (G x (K x X),j) is a universal G-mapping for H-space
K H
X. By the previous proposition there exists unique G-homeomorphism f': G x X —
H
G x (K x X) and
K H



It remains to show that f defined above is inverse to f’. We have
f(f(lg.=D)) = f(lg: [e.z]]) = lge, 2] = [g, 2],
F'(fg, [k, 2]])) = f'([gk,2]) = [gk. [e, 2]] = [g, kle, 2]] = [g, [k, z]].
O

Lemma 2.7. Suppose H acts trivially on X. Then GX X s canonically G-homeomorphic
H

to G/H x X, with G-homeomorphism being [g, x| — (gH, x).
In particular if Z is a one-point space, then G X Z = G/H.
H

Proof. (Easy) exercise. O

Proposition 2.8. Suppose H, K are subgroups of a topological group G and H C K.

Then the mapping f: G x K/H — G/H, f([g,kH]) = gkH is a G-homeomorphism.
K

Proof. Let Z = {z} be one-point space (considered as H-space). Previous lemma and
Proposition 2.6 imply that there are G-homeomorphisms

GxK/H=2Gx(KxZ)=2GxZ=G/H.
K K H H

Moreover if you trace the explicit G-homeomorphisms from the proofs above, you will
get f as a concrete G-homeomorphism. m

The induced space has the same orbit space as the original space.

Proposition 2.9. Suppose X is an H-space, where H is a closed subgroup of a topo-
logical group G. Then the canonical H-mapping i: X — G x X, i(z) = [e, x| defines
H

a homeomorphism i: X/H = (G x X)/G between orbit spaces.
H

Proof. Consider the composite mapping poi: X — (G x X)/G, where p: G x X —
H H
(G x X)/G is a canonical projection. It is clearly continuous. Also poi factors through
H

the orbit space X/H, since for all z € X, h € H we have
pli(ha)) = Gle, ha] = Glh,a] = Ghle,a] = Gle,a] = p(i(2)).

Hence there is induced continuous mapping i: X/H = (G x X)/G.
H

The composition of the second projection G x X — X and canonical projection
X — X/H is a continuous mapping j: G x X — X/H, (g,x) — Hzx. Suppose h € H.
Then

jlgh™ hx) = Hhx = Hx,

so j factors through G' x X, hence defines a continuous mapping j: G x X — X/H.
H H
Finally for any ¢’ € G

J(d'lg, x]) = j([g'g,2]) = Hx = j([g, 7]),
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so j factors through the orbit space <G1>§X)/G and hence defines a continuous mapping
i (@ x X)/G — X/H defined by j(G[g,]) = Hux.
Now o .
joi(Hz) = j(Gle,x]) = Hx,
i0j(Glg,2]) = i(Hz) = Gle,z] = G[g, ]
for all g € G,z € X. Hence j is a continuous inverse of 7, so the latter is a homeo-

morphism. O

Proposition 2.10. Suppose K is a closed subgroup of a topological group G and H

15 a normal closed subgroup of K. Let X be a K-space, such that the restricted action

of H on X s trivial. Then the mapping f: G x X — (G/H) x X defined by
K K/H

f(lg,z]) = [gH, x] is a G-homeomorphism.
Here we consider G/H a G — K/H-bispace.

Proof. Notice that since H acts trivially on X, there is a well-defined canonical action
of K/H on X defined by kH -z = kx, hence X can be considered anK/H-space.
The fact that G/H is a left G-space is well-known. Let us check that also the right
action of K/H on G/H defined by (gH) - (kH) = gkH is well-defined. Suppose
h,h' € H. Then

(gh)(kh)H = g(hkW)H = ghkH = gkh"H = gkH

for some h” € H, since H is normal in K. Continuity of this action is checked in the
usual manner and the fact that left G-action and right K/H-action commute is easy
to verify.

Continuity of f follows as usual - it is a mapping induced by the mapping (g, x) —
[gH, x] which is clearly continuous, one only needs to verify that f is well-defined.
Suppose k € K. Then

f(lgk™" ka)) = [gk™" H ka] = [gH - (kH)™", (kH)z] = [gH,z] = f([g,]).

To define an inverse mapping f': (G/H) x X — G x X we first consider canonical
K/H K

projection p: G x X — G x X and show that it induced well-defined continuous

K
mapping p': G/H x X — G x X. Suppose ¢’ = gh for some h € H. Then
K

p(gx) =g, 2] = [gh, 2] = [g, ha] = [g, 2],

since H C K and H acts trivially on X. Hence p’ exists. Since 7 x id: G x X —
GG/ H x X is a quotient mapping (it is a product of open surjections) and p’o (7 xid) = p
is continuous, it follows that p’ is continuous.



Next we show that p’ factors through the quotient space (G/H) x X. Suppose
K/H
kH € K/H. Then

P ((gH-kH™', (kH)z)) = p'(9k™ " H, kx) = p(gk~", kz) = [gk~", ka] = [g, 2] = p'(¢H, z).

Hence there is a well-defined continuous mapping f': (G/H) x X — G x X, defined
K/H K

by the formula
f'lgH,a] = [g,x].

f and f” are clearly inverses of each other. Also for instance f is G-mapping:

flgld's =) = f(lgg', #]) = [99'H, x] = glg'H, x].
0

Corollary 2.11. Suppose H is a closed subgroup of a topological space G and X is a

G-space. Then

G x XP~2qg/H x X"
N(H) N(H)/H

as G-spaces.

Proof. X is an N(H)-space, and the restricted action of H on X is trivial, so the
previous proposition applies. ]

Consider the inclusion ¢: X < X, where X is a G-space and H is a closed subgroup
of G. Then ¢ is N(H)-equivariant, so by the universal property of induced G-space

there is continuous G-mapping f: G x X — X defined by f([g,z]) = gz for all
N(H)

g € G,z € X. Since by the previous corollary there is a G-homeomorphism

G x XP~2@/H x X"
N(H) N(H)/H

so there is also a G-mapping f': G/H x X" — X defined by f'([¢gH,z]) = gz.
N(H)/H

Theorem 2.12. Suppose G is a compact group, H its closed subgroup and X a G-

space, such that only one isotropy type [H] occurs at X. Then both f: G x X" — X
N(H)

and f': G/H x X" — X are G-homeomorphisms.
N(H)/H
Proof. Enough to prove that f is a homeomorphism. We first show that f is surjective.
Suppose z € X. Then [G,] = [H], so there exists g € G such that G, = gHg™'. Tt
follows that
Gg_lx = gilGocg =H,

soy =g 'z € X" and
fg.y)) =gy ==



Thus f is a surjection.

Next we prove f is an injection.

Suppose [g,7],[¢,2'] € G x X such that f([g,7]) = gr = g2’ = f(l¢g’,2']). Let
N(H)

n =g~ 'g, then nz = 2/, so
H cC Gy =nGyn?,

since 2/ € X!, By assumptions G, is conjugate to H. Since G is compact, by Lemma
1.15 in [4] this implies that in n € N(H). Hence

lg, 2] = [g'n, 2] = [¢/,na] = [¢', 2'].
We have shown that f is bijection.

Since G is compact, the action mapping ®: G x X — X is closed (Theorem 1.9 in
[2]). Since X7 is closed, the restricted mapping ¢ = ®|: G x X# — X is closed.
Now by definition of f we have that fom = ¢, so ¢ is surjective (since f is). As a

surjective closed mapping, it is a quotient mapping. Here 7: G x X — G x X#
N(H)

is a canonical projection, hence quotient. It follows that the induced mapping f is a
homeomorphism. O

The meaning of this theorem is that, under assumptions we made, the restricted action
of N(H) on the subspace X contains all the information about the space.

Proposition 2.13. Suppose X, G and H are as in Theorem 2.12 above. Then inclu-
sion X" — X induces homeomorphism

X"/NH) = X/G
between orbit spaces.

Proof. By Proposition 2.9 inclusion X# — X induces a homeomorphism X /H =

(G x XH)/G. On the other hand by the previous Theorem G x X" = X as
N(H) N(H)

G-spaces, so also orbit spaces are homeomorphic, (G x X*¥)/G = X/G. Combining
N(H)
these two result together yields the claim. O]
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