1 Twisted products

Suppose G_1 and G_2 are topological groups and X is a space, such that G_1 acts on X from the left and G_2 acts on X from the right. We also assume that these two actions *commute* i.e.

$$g(xg') = (gx)g'$$

for all $g \in G_1, g' \in G_2$ and $x \in X$. In this case we say that X is a $G_1 - G_1$ bispace.

Example 1.1. Group G acts on itself by multiplication both from the left and on the right and these actions obviously commute since

$$g(xh) = (gx)h$$

for all $g, x, h \in G$ (this is just a reformulation of associativity of the multiplication). Hence G is a G - G bispace in a natural way.

More generally if H, K are subgroups of G then G is an H - K bispace in an obvious way.

Remark 1.2. Any G-space X can be considered as a $G - \{e\}$ bispace, where trivial group $\{e\}$ acts on X in the only possible way from the right. Likewise if X is a right G-space, it can be thought of as an $\{e\} - G$ bispace.

Suppose $G_1, G_2, \ldots, G_{n+1}$ are topological groups, $n \ge 1$ and $G_i - G_{i+1}$ bispace X_i is given for every $i = 1, \ldots, n$. We define a (left) action of the product group $G_2 \times \ldots \times G_n$ on the product space $X_1 \times X_2 \ldots X_n$ defined by

$$(g_2, g_3, \dots, g_n)(x_1, x_2, \dots, x_n) = (x_1 g_2^{-1}, g_2 x_2 g_3^{-1}, \dots, g_i x_i g_{i+1}^{-1}, \dots, g_n x_n).$$

The orbit space of this action is denoted

$$X_1 \underset{G_2}{\times} X_2 \underset{G_3}{\times} X_3 \underset{G_4}{\times} \dots \underset{G_{n-1}}{\times} X_{n-1} \underset{G_n}{\times} X_n$$

and called the *twisted product* of bispaces X_1, \ldots, X_n . The class of the element (x_1, x_2, \ldots, x_n) in the twisted product $X_1 \underset{G_2}{\times} X_2 \underset{G_3}{\times} X_3 \underset{G_4}{\times} \ldots \underset{G_{n-1}}{\times} X_{n-1} \underset{G_n}{\times} X_n$ will be denoted as

$$[x_1, x_2, \ldots, x_n].$$

Twisted product $X_1 \underset{G_2}{\times} X_2 \underset{G_{33}}{X} \ldots \underset{G_{n+1_n}}{X}$ has a canonical structure of $G_1 - G_{n+1}$ -bispace. Precisely put we define action of G_1 on $X_1 \underset{G_2}{\times} X_2 \underset{G_3}{\times} X_3 \underset{G_4}{\times} \ldots \underset{G_{n-1}}{\times} X_{n-1} \underset{G_n}{\times} X_n$ by the formula

$$g[x_1, x_2, \ldots, x_n] = [gx_1, x_2, \ldots, x_n].$$

This action is well-defined, since X_1 is a $G_1 - G_2$ bispace, so

$$[gx_1, x_2, \dots, x_n] = [g(x_1g_2^{-1}), g_2x_2g_3^{-1}, \dots, g_nx_n].$$

It is easy to check that it satisfies the algebraic properties of action. Finally the continuity of this action follows from the commutative diagram

in a usual manner. Here Φ is G-action defined above, Φ' is a mapping defined by

$$\Phi'(g, x_1, \ldots, x_n) = (gx_1, x_2, \ldots, x_n),$$

so obviously continuous. Since $id \times \pi$ is open and surjective, it is quotient.

Similarly we define right action of G_{n+1} on $X_1 \underset{G_2}{\times} X_2 \underset{G_3}{\times} X_3 \underset{G_4}{\times} \ldots \underset{G_{n-1}}{\times} X_{n-1} \underset{G_n}{\times} X_n$ by the formula

$$[x_1, \dots, x_n, x_{n+1}] \cdot g = [x_1, \dots, x_n, x_{n+1}g]$$

In the same way, as for the G_1 -action, one checks that this action is well-defined and continuous right action of G_{n+1} . It is also easy to see that left action of G_1 and right action of G_{n+1} commute, so twisted product $X_1 \underset{G_2}{\times} X_2 \underset{G_3}{\times} X_3 \underset{G_4}{\times} \ldots \underset{G_{n-1}}{\times} X_{n-1} \underset{G_n}{\times} X_n$ is a $G_1 - G_{n+1}$ bispace.

2 Induced G-space

Suppose G is a topological group, H closed subgroup of G and X is an H-space. We apply the construction of twisted products in the special case, where we consider G an G-H bispace and X an $H-\{e\}$ -bispace. Hence G acts on itself by multiplication on the left and H acts on G by multiplication from the right,

$$g \cdot h = gh^{-1}.$$

By the general construction above we obtain a twisted product $G \underset{H}{\times} X$, which is thus an orbit space of $G \times X$ with respect to the action of H defined by

$$h(g, x) = (gh^{-1}, hx).$$

Elements of $G \underset{H}{\times} X$ will be denoted as [g, x]. Notice that for any $h \in H$ we have

$$[g,hx] = [gh,x].$$

Since we consider G to be a left G-space, $G \underset{H}{\times} X$ is a G-space, with action of G defined by

$$g[g', x] = [gg', x].$$

There is a natural *H*-mapping $i: X \to G \underset{H}{\times} X$ defined by i(x) = [e, x]. It is obviously continuous and to check that it is *H*-equivariant we observe that

$$i(hx) = [e, hx] = [h, x] = h[e, x] = hi(x).$$

The pair $(G \times X, i)$ is called **induced** *G*-space of the *H*-space *X*. We often abuse notation and also call the *G*-space $G \underset{H}{\times} X$ an induced *G*-space of *X*.

Examples 2.1. 1. Suppose $G = S^1$ and $H = \{1, -1\} = \mathbb{Z}_2$. H acts on X = [0, 1] by

 $(-1) \cdot x = 1 - x.$

The space $G \underset{H}{\times} X$ is homeomorphic to the Möbius band, which, thus, has a structure of G-space. The verification of this claim and the description of the S^1 -action on the Möbius band defined by this description is left to the reader as an exercise.

2. Similarly if we take G and H as above and let H act on $X = S^1$ by

$$(-1) \cdot z = \bar{z} = z^{-1},$$

then the induced space $G \underset{H}{\times} X$ is Klein's bottle.

The mapping $i: X \to G \underset{H}{\times} X$ is always injective. To verify this suppose $x, y \in X$ and [e, x] = [e, y]. This means that there is an $h \in H$ such that $(e, x) = h(e, y) = (h^{-1}, hy)$. This implies that h = e, so x = hy = y.

Mapping i is, thus, an injective continuous mapping, but in general it need not to be imbedding.

Proposition 2.2. Suppose X is Hausdorff G-space, where G is locally compact. Then $G \underset{H}{\times} X$ is Hausdorff. Moreover if H is compact, $G \underset{H}{\times} X$ is Palais proper G-space and mapping $i: X \to G \underset{H}{\times} X$ is a closed embedding.

Proof. Action of H on G, $h \cdot g = gh^{-1}$ is Borel proper, since for any compact subspace K of G we have

$$H(K|K) = \{h \in H \mid hK \cap K \neq \emptyset\} = H \cap KK^{-1},$$

which is compact, since H is closed. Since G is locally compact, Theorem 2.8 in [1] implies that this action is also Palais proper. It is easy to check that if X is Palais proper H-space and Y is arbitrary H-space, then diagonal action g(x, y) = (gx, gy) on $X \times Y$ is Palais proper. Hence action of H on $G \times H$ is Palais proper, so the induced space $G \times X$ is Hausdorff by Proposition 2.4. in [1].

Suppose H is compact. Then canonical projection $p: G \times X \to G \underset{H}{\times} X$ is closed, so its

restriction to closed subset $\{(e, x) \mid x \in X\}$ is closed. Also the embedding $x \mapsto (e, x)$ is a closed embedding. Hence their composition, which happens to be exactly *i*, is closed.

The second projection $G \times X \to G$ composed with canonical projection $G \to G/H$ defines a continuous mapping $f: G \times X \to G/H$. This mapping factors through the orbit space $G \underset{H}{\times} X$, since

$$f(gh^{-1}, hx) = gh^{-1}H = gH = f(g, x)$$

Thus we obtain a well-defined continuous mapping $\bar{f} \colon G \underset{H}{\times} X \to G/H$ defined by

$$\bar{f}[g,x] = gH.$$

This mapping is G-equivariant, because

$$\bar{f}(g'[gx]) = \bar{f}[g'gx] = g'gH = g'(gH).$$

Now since H is compact, G/H is Borel proper (exercise 10.1). Since G (hence also G/H) is locally compact, Proposition 2.8 in [1] implies that G/H is Palais proper G-space. Since there exists a G-map $\overline{f}: G \underset{H}{\times} X \to G/H$, Proposition 2.8 in [1] implies that also $G \underset{H}{\times} X$ is Palais proper.

Remark 2.3. More generally it can be shown that $i: X \to G \underset{H}{\times} X$ is embedding also if canonical projection $\pi: G \to G/H$ has a local cross-section, i.e. there exists a neighbourhood U of eH in G/H and continuous mapping $s: U \to G$ such that $\pi \circ s = id_U$ (see exercises). For example if G is a Lie group and H a closed subgroup of G, projection $\pi: G \to G/H$ always has a local cross-section. The proof of this extremely important property of Lie groups requires differential geometry, so we don't have a possibility to go through it.

Induced G-space satisfies the important universal property defined below.

Definition 2.4. Suppose X is an H-space, where H is a closed subgroup of a topological group G. The pair (Y, j), where Y is a G-space and $j: X \to Y$ an H-mapping is called **universal** G-space for X if for every G-space X' and H-mapping $f: X \to X'$ there exists unique G-mapping $\overline{f}: Y \to X'$ such that $f = \overline{f} \circ j$. In other words the diagram

commutes and \overline{f} is the only mapping that makes it commute.

Universal G-space always exist and is unique up to a canonical G-homeomorphism.

Proposition 2.5. Suppose X is an H-space as above. Then the pair $(G \times X, i)$ is a universal G-space for X. Moreover if (Y, j) is another universal G-space there exists unique G-homeomorphism $k: G \times X \to Y$ such that $k \circ i = j$. This homemorphism is defined by the formula

$$k[g, x] = gj(x).$$

Proof. Suppose X' is an arbitrary G-space and $f: X \to X'$ is an H-mapping. Suppose $\bar{f}: G \underset{H}{\times} X \to X'$ is G-mapping such that $\bar{f} \circ i = f$. Then for all $g \in G, x \in X$ we have

$$\bar{f}([g,x]) = \bar{f}(g[e,x]) = g\bar{f}[e,x] = g\bar{f}(i(x)) = gf(x).$$

Hence \bar{f} is unique. To show existence let us define $\bar{f}: G \underset{H}{\times} X \to X'$ by the formula above,

$$\bar{f}([g,x]) = gx$$

We need to show that \overline{f} is well-defined. Suppose $h \in H$. Then

$$\bar{f}([gh^{-1}, hx]) = (gh^{-1})hx = gx = \bar{f}([g, x]).$$

Hence \overline{f} is well-defined. It is evidently continuous, since $\overline{f} \circ p = k$, where $k: G \times X \to X'$, k(g, x) = gf(x) is clearly continuous and canonical projection $p: G \times X \to G \underset{H}{\times} X$ is a quotient mapping.

 \bar{f} is clearly *G*-mapping,

$$\bar{f}(g'[g,x]) = \bar{f}([g'g,x]) = (g'g)x = g'(gx) = g'f([g,x])$$

and $\overline{f}(i(x)) = \overline{f}([e, x]) = ex = x$ for all $x \in X$. Hence $(G \underset{H}{\times} X, i)$ is a universal *G*-space for *X*.

Suppose (Y, j) is a universal *G*-space for *X*. Then in particular $j: X \to Y$ is *H*-mapping to a *G*-space *X*, so there exists unique $\overline{j}: G \times X \to Y$, such that $\overline{j} \circ i = j$. Likewise, since (Y, j) is a universal *G*-space for *X* and $i: X \to G \underset{H}{\times} X$ is an *H*-mapping, there exists unique $\overline{i}: Y \to G \underset{H}{\times} X$ such that $\overline{i} \circ j = i$.

Notice that by the explicit construction we have above \overline{j} is defined by the formula

$$\bar{j}([g,x]) = gj(x).$$

Consider the mapping $\delta = \overline{i} \circ \overline{j} \colon G \underset{H}{\times} X \to G \underset{H}{\times} X$. This is a *G*-mapping and $\delta \circ i = i$, because

$$\delta \circ i = \overline{i} \circ \overline{j} \circ i = \overline{i} \circ j = i.$$

But on the other hand identity mapping id: $G \underset{H}{\times} X \to G \underset{H}{\times} X$ is also a *G*-mapping that clearly has property id $\circ i = i$. Since such a mapping is unique (by definition of universal *G*-mapping) we must have $\overline{i} \circ \overline{j} = \delta = \text{id}$.

Similarly if we consider mapping $\sigma = \overline{j} \circ \overline{i} \circ Y \to Y$, we see that σ is a *G*-mapping such that $\sigma \circ j = j$. Since id: $Y \to Y$ have the same properties and Y is a universal *G*-space, we have that $\overline{j} \circ \overline{i} = \sigma = \text{id}$.

We have shown that \overline{j} and \overline{i} are inverses of each other. In particular they are both G-homeomorphisms.

Induced space is a " transitive" construction.

Proposition 2.6. Suppose G is a topological group, H, K subgroups of G and $H \subset K$. Suppose X is an H-space. Then there is a canonical G-homeomorphism $f: G \underset{K}{\times} (K \underset{H}{\times} X)) \rightarrow G \underset{H}{\times} X$ defined by

$$f([g, [k, x]]) = [gk, x], g \in G, k \in K, x \in X.$$

Proof. Let $j: X \to G \underset{K}{\times} (K \underset{H}{\times} X))$ be defined by j(x) = [e, [e, x]]. Then j is continuous H-mapping. Let us show that the pair $(G \underset{K}{\times} (K \underset{H}{\times} X)), j)$ is a universal G-mapping for H-space X. Suppose $\alpha: X \to X'$ is an H-map, where X' is a G-space. Since X' is in particular K-space there exists unique K-mapping $\bar{\alpha}: K \underset{H}{\times} X \to X'$ such that $\bar{\alpha} \circ i = \alpha$, where $i: X \to K \underset{H}{\times} X, i(x) = [e, x]$. Moreover

$$\bar{\alpha}[k,x] = k\alpha(x)$$

for all $k \in K, x \in X$.

Now $\bar{\alpha}$ is a *K*-mapping into *G*-space *X'*, so there exists unique mapping $\bar{\alpha}: G \times (K \times_{H} X)) \to X'$ such that $\bar{\alpha} \circ i' = \bar{\alpha}$, where $i': K \times_{H} X \to G \times_{K} (K \times_{H} X))$ defined by i'([k, x]) = [e, [k, x]]. Moreover by construction we have

$$\bar{\bar{\alpha}}([g,[k,x]) = g\bar{\alpha}([k,x]) = gk\alpha(x).$$

Now simple calculation verifies that $\bar{\alpha} \circ j = \alpha$, since $i' \circ i = j$.

We need to show uniqueness of $\bar{\alpha}$. Suppose $\beta \colon G \underset{K}{\times} (K \underset{H}{\times} X)) \to X'$ is a *G*-mapping such that $\beta \circ j = \alpha$. Then

$$\begin{split} \beta([g,[k,x]]) &= \beta(g[e,[k,x]]) = g\beta([e,[k,x]]) = g\beta([e,k[e,x]]) = \\ &= g\beta([k,[e,x]] = g\beta(k[e,[e,x]]) = gk\beta(j(x)) = gk\alpha(x). \end{split}$$

Hence $\beta = \overline{\overline{\alpha}}$ is unique.

We have shown that the pair $(G \times (K \times X), j)$ is a universal *G*-mapping for *H*-space *X*. By the previous proposition there exists unique *G*-homeomorphism $f' \colon G \times X \to G \times (K \times X)$ and

$$f'([g,x]) = gj(x) = g[e, [e,x]] = [g, [e,x]].$$

It remains to show that f defined above is inverse to f'. We have

$$f(f'([g, x])) = f([g, [e, x]]) = [ge, x] = [g, x],$$
$$f'(f([g, [k, x]])) = f'([gk, x]) = [gk, [e, x]] = [g, k[e, x]] = [g, [k, x]].$$

Lemma 2.7. Suppose H acts trivially on X. Then $G \underset{H}{\times} X$ is canonically G-homeomorphic to $G/H \times X$, with G-homeomorphism being $[g, x] \mapsto (gH, x)$. In particular if Z is a one-point space, then $G \underset{H}{\times} Z \cong G/H$.

Proof. (Easy) exercise.

Proposition 2.8. Suppose H, K are subgroups of a topological group G and $H \subset K$. Then the mapping $f: G \underset{K}{\times} K/H \to G/H$, f([g, kH]) = gkH is a G-homeomorphism.

Proof. Let $Z = \{z\}$ be one-point space (considered as *H*-space). Previous lemma and Proposition 2.6 imply that there are *G*-homeomorphisms

$$G \underset{K}{\times} K/H \cong G \underset{K}{\times} (K \underset{H}{\times} Z) \cong G \underset{H}{\times} Z \cong G/H.$$

Moreover if you trace the explicit G-homeomorphisms from the proofs above, you will get f as a concrete G-homeomorphism.

The induced space has the same orbit space as the original space.

Proposition 2.9. Suppose X is an H-space, where H is a closed subgroup of a topological group G. Then the canonical H-mapping $i: X \to G \underset{H}{\times} X, i(x) = [e, x]$ defines a homeomorphism $\tilde{i}: X/H \cong (G \underset{H}{\times} X)/G$ between orbit spaces.

Proof. Consider the composite mapping $p \circ i: X \to (G \times X)/G$, where $p: G \times X \to (G \times X)/G$ is a canonical projection. It is clearly continuous. Also $p \circ i$ factors through the orbit space X/H, since for all $x \in X, h \in H$ we have

$$p(i(hx)) = G[e, hx] = G[h, x] = Gh[e, x] = G[e, x] = p(i(x)).$$

Hence there is induced continuous mapping $\tilde{i}: X/H \cong (G \underset{H}{\times} X)/G$.

The composition of the second projection $G \times X \to X$ and canonical projection $X \to X/H$ is a continuous mapping $j: G \times X \to X/H$, $(g, x) \mapsto Hx$. Suppose $h \in H$. Then

$$j(gh^{-1}, hx) = Hhx = Hx,$$

so j factors through $G \underset{H}{\times} X$, hence defines a continuous mapping $\overline{j} \colon G \underset{H}{\times} X \to X/H$. Finally for any $g' \in G$

$$\overline{j}(g'[g,x]) = \overline{j}([g'g,x]) = Hx = \overline{j}([g,x]),$$

-		-
L		1
L		1

so \overline{j} factors through the orbit space $(G \underset{H}{\times} X)/G$ and hence defines a continuous mapping $\widetilde{j} \colon (G \underset{H}{\times} X)/G \to X/H$ defined by $\widetilde{j}(G[g, x]) = Hx$. Now

$$j \circ i(Hx) = j(G[e, x]) = Hx,$$
$$\tilde{i} \circ \tilde{j}(G[g, x]) = \tilde{i}(Hx) = G[e, x] = G[g, x]$$

for all $g \in G, x \in X$. Hence \tilde{j} is a continuous inverse of \tilde{i} , so the latter is a homeomorphism.

Proposition 2.10. Suppose K is a closed subgroup of a topological group G and H is a normal closed subgroup of K. Let X be a K-space, such that the restricted action of H on X is trivial. Then the mapping $f: G \underset{K}{\times} X \to (G/H) \underset{K/H}{\times} X$ defined by

f([g, x]) = [gH, x] is a G-homeomorphism. Here we consider G/H a G - K/H-bispace.

Proof. Notice that since H acts trivially on X, there is a well-defined canonical action of K/H on X defined by $kH \cdot x = kx$, hence X can be considered anK/H-space. The fact that G/H is a left G-space is well-known. Let us check that also the right action of K/H on G/H defined by $(gH) \cdot (kH) = gkH$ is well-defined. Suppose $h, h' \in H$. Then

$$(gh)(kh')H = g(hkh')H = ghkH = gkh''H = gkH$$

for some $h'' \in H$, since H is normal in K. Continuity of this action is checked in the usual manner and the fact that left G-action and right K/H-action commute is easy to verify.

Continuity of f follows as usual - it is a mapping induced by the mapping $(g, x) \mapsto [gH, x]$ which is clearly continuous, one only needs to verify that f is well-defined. Suppose $k \in K$. Then

$$f([gk^{-1}, kx]) = [gk^{-1}H, kx] = [gH \cdot (kH)^{-1}, (kH)x] = [gH, x] = f([g, x]).$$

To define an inverse mapping $f': (G/H) \underset{K/H}{\times} X \to G \underset{K}{\times} X$ we first consider canonical projection $p: G \times X \to G \underset{K}{\times} X$ and show that it induced well-defined continuous mapping $p': G/H \times X \to G \underset{K}{\times} X$. Suppose g' = gh for some $h \in H$. Then

$$p(g', x) = [g', x] = [gh, x] = [g, hx] = [g, x],$$

since $H \subset K$ and H acts trivially on X. Hence p' exists. Since $\pi \times id: G \times X \to G/H \times X$ is a quotient mapping (it is a product of open surjections) and $p' \circ (\pi \times id) = p$ is continuous, it follows that p' is continuous.

Next we show that p' factors through the quotient space $(G/H) \underset{K/H}{\times} X$. Suppose $kH \in K/H$. Then

$$p'((gH \cdot kH^{-1}, (kH)x)) = p'(gk^{-1}H, kx) = p(gk^{-1}, kx) = [gk^{-1}, kx] = [g, x] = p'(gH, x) =$$

Hence there is a well-defined continuous mapping $f': (G/H) \underset{K/H}{\times} X \to G \underset{K}{\times} X$, defined by the formula

$$f'[gH, x] = [g, x].$$

f and f' are clearly inverses of each other. Also for instance f is G-mapping:

$$f(g[g', x]) = f([gg', x]) = [gg'H, x] = g[g'H, x].$$

Corollary 2.11. Suppose H is a closed subgroup of a topological space G and X is a G-space. Then

$$G \underset{N(H)}{\times} X^H \cong G/H \underset{N(H)/H}{\times} X^H.$$

as G-spaces.

Proof. X^H is an N(H)-space, and the restricted action of H on X^H is trivial, so the previous proposition applies.

Consider the inclusion $\iota: X^H \hookrightarrow X$, where X is a G-space and H is a closed subgroup of G. Then ι is N(H)-equivariant, so by the universal property of induced G-space there is continuous G-mapping $f: G \underset{N(H)}{\times} X^H \to X$, defined by f([g, x]) = gx for all $g \in G, x \in X$. Since by the previous corollary there is a G-homeomorphism

$$G \underset{N(H)}{\times} X^H \cong G/H \underset{N(H)/H}{\times} X^H,$$

so there is also a G-mapping $f' \colon G/H \underset{N(H)/H}{\times} X^H \to X$ defined by f'([gH, x]) = gx.

Theorem 2.12. Suppose G is a compact group, H its closed subgroup and X a G-space, such that only one isotropy type [H] occurs at X. Then both $f: G \underset{N(H)}{\times} X^H \to X$ and $f': G/H \underset{N(H)/H}{\times} X^H \to X$ are G-homeomorphisms.

Proof. Enough to prove that f is a homeomorphism. We first show that f is surjective. Suppose $x \in X$. Then $[G_x] = [H]$, so there exists $g \in G$ such that $G_x = gHg^{-1}$. It follows that

$$G_{g^{-1}x} = g^{-1}G_xg = H,$$

so $y = g^{-1}x \in X^H$ and

$$f([g,y]) = gy = x.$$

Thus f is a surjection.

Next we prove f is an injection.

Suppose $[g, x], [g', x'] \in G \underset{N(H)}{\times} X^H$ such that f([g, x]) = gx = g'x' = f([g', x']). Let $n = g'^{-1}g$, then nx = x', so

$$H \subset G_{x'} = nG_x n^{-1},$$

since $x' \in X^H$. By assumptions G_x is conjugate to H. Since G is compact, by Lemma 1.15 in [4] this implies that in $n \in N(H)$. Hence

$$[g, x] = [g'n, x] = [g', nx] = [g', x'].$$

We have shown that f is bijection.

Since G is compact, the action mapping $\Phi: G \times X \to X$ is closed (Theorem 1.9 in [2]). Since X^H is closed, the restricted mapping $\phi = \Phi |: G \times X^H \to X$ is closed. Now by definition of f we have that $f \circ \pi = \phi$, so ϕ is surjective (since f is). As a surjective closed mapping, it is a quotient mapping. Here $\pi: G \times X^H \to G \underset{N(H)}{\times} X^H$

is a canonical projection, hence quotient. It follows that the induced mapping \hat{f} is a homeomorphism.

The meaning of this theorem is that, under assumptions we made, the restricted action of N(H) on the subspace X^H contains all the information about the space.

Proposition 2.13. Suppose X, G and H are as in Theorem 2.12 above. Then inclusion $X^H \hookrightarrow X$ induces homeomorphism

$$X^H/N(H) \cong X/G$$

between orbit spaces.

Proof. By Proposition 2.9 inclusion $X^H \hookrightarrow X$ induces a homeomorphism $X^H/H \cong (G \underset{N(H)}{\times} X^H)/G$. On the other hand by the previous Theorem $G \underset{N(H)}{\times} X^H \cong X$ as G-spaces, so also orbit spaces are homeomorphic, $(G \underset{N(H)}{\times} X^H)/G \cong X/G$. Combining these two result together yields the claim.

References

- [1] More on proper actions of locally compact groups lecture material.
- [2] Illman, S.: Topological Transformation Groups I lecture notes.
- [3] Kawakubo, K.: The Theory of Transformation groups- Oxford University Press, 1991.
- [4] Illman, S.: Topological Transformation Groups II lecture notes.
- [5] Palais, R.S.: On the existence of slices for actions of non-compact Lie groups. -Ann. of Math. (2) 73, 1961, 295-323.