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1 Fibre bundles and bundle maps

Let us begin with a simple example.

Example 1. Let E and X be topological spaces and π : E → X a continuous
mapping between them. Suppose that for some topological space F there exists
a homeomorphism φ : E → X × F such that p ◦ φ = π, where p is the �rst
projection, meaning that the diagram

E
φ
- X × F

X

�

p

π

-

commutes. Then the triple (E, π,X) is called a product bundle, where E is
the total space, X is the base space and π is the projection.

In the example we just took the cartesian product of X and F and wished
for a mapping such that the diagram would commute. A �bre bundle can
be seen as a generalization of this in the sense that we de�ne it to look
like a product bundle but only locally. In almost any non-trivial case, the
total space of a �bre bundle may be quite di�cult to handle as such but,
nevertheless, locally it behaves as a cartesian product. Let us now give the
formal de�nition, which contains a bit more than the previous discussion
implies.

De�nition 1. Let K be a topological group acting e�ectively on a topological
space F , and let E and X be Hausdor� spaces with a continuous mapping
π : E → X. Suppose that there exists an open covering {Uα}α∈Λ of X and
for each α ∈ Λ a homeomorphism φα : π−1(Uα)→ Uα×F with the following
properties:
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1. The �rst projection pα : Uα × F → Uα gives pα ◦ φα = π|π−1Uα

2. For x ∈ Uα, �rst de�ne

φα,x : π−1(x)→ F

by φα,x(z) = (p′α ◦ φα)(z), where p′α : Uα × F → F is the second
projection. Put

θβα(x) = φβ,x ◦ φ−1
α,x : F → F for x ∈ Uα ∩ Uβ.

Then θβα(x) : F → F belongs to K for each x.

3. The mapping θβα : Uα ∩ Uβ → K is continuous.

The system (E, π,X, F,K, Uα, φα) so obtained is called a coordinate bundle.

Two coordinate bundles (E, π,X, F,K, Uα, φα) and (E, π,X, F,K, φ′µ, U
′
µ)

are considered to be equivalent, if for each x the values θ̄µα(x) = φ′µ,x ◦
φ−1
α,x belong to K and the mapping θ̄ : U ′µ ∩ Uα → K is continuous. An

equivalence class of a coordinate bundle is called a �bre bundle, with E the
total space, X the base space, π the projection, F the �bre and K the
structure group. For a representative, or a coordinate bundle, Uα is called
a coordinate neighbourhood, φα a coordinate mapping and θβα a transition
function.

If x is in the base space, many points of the total space E may project onto
it: namely the points z ∈ π−1(x). Each of these has di�erent representations
with respect to di�erent charts Uα containing x. We are interested to change
the chart, i.e. to deduce the new coordinates of a point when moving between
overlapping charts Uα and Uβ. This is exactly what the mapping θβα(x) does:
if x ∈ Uα ∩ Uβ and z ∈ π−1(x), then φα(z) = (x, f) contains the necessary
information in the second coordinate; hence we de�ne φα,x(z) = p2 ◦ φα(z).
Now the mapping θβα(x) = φβ,x ◦ φ−1

α,x gives us the second coordinate of the
point z w.r.t. Uβ when we know it w.r.t. Uα.

Furthermore, we demand that θβα takes the points from the overlapping
charts to elements of K in a continuous manner so that we get a grasp of the
structure of this transition process.

According to the above discussion we can write

φβ ◦ φ−1
α (x, f) = φβ(φ−1

α,x(f)) = (x, φβ,x ◦ φ−1
α,x(f)) = (x, θβα(x)(f)),

which is often used to de�ne the mapping θβα.

Example 2. The product bundle de�ned in the beginning actually ful�lls the
demands of the above de�nition.
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Example 3. Consider for a moment the famous Möbius band. It is a great
example of such a structure that locally looks like a cartesian product of two
spaces but which doesn't hold globally because of the twist. In the following
we will show that the Möbius band turns into a coordinate bundle in a natural
way.

Let I = [−1, 1] and choose I for the �bre F and a circle obtained from
I for the base space X. The total space E, the actual Möbius strip, is then
decided to be the product space I × F with a twisting identi�cation (1, y) ∼
(−1, 1− y); formally E is the quotient space I × F/ ∼. Note that this twist
is done over the central line {(x, 0) : x ∈ I} of I × F meaning that it only
identi�es the two ends making it coincide with the base space X. Now we
get a projection π : E → X by taking just the �rst projection I × F → I
w.r.t. the identi�cation. Formally π([x, y]∼) = [x, 0]∼ where [, ]∼ denotes the
equivalence class. So π just projects a point from the strip straight to the
central circle.

Now it su�ces to choose an open cover for X together with the coordinate
functions to make the above construction a coordinate bundle. Using the
identi�cation ∼ of −1 and 1, de�ne

Uα = {(−2/3, 2/3)} / ∼= (−2/3, 2/3)

and Uβ = {[−1,−1/3] ∪ [1/3, 1]} / ∼ .

Then {Uα, Uβ} is an open covering for the base space X, with

Uα ∩ Uβ = (−2/3,−1/3) ∪ (1/3, 2/3).

Continue to de�ne mappings

φα : π−1Uα → Uα × F, φα = Id

and

φβ : π−1Uβ → Uβ × F,

φβ([x, y]∼) =

{
(x, y), x ∈ (1/3, 1], y ∈ F
(x,−y), x ∈ [−1,−1/3), y ∈ F

(Note that φβ is well-de�ned since we identi�ed (1, y) with (−1,−y).)
Both mappings are clearly homeomorphisms satisfying p ◦ φα = π|π−1Uα

and p◦φβ = π|π−1Uβ , whence they are coordinate functions. Remembering that
θβα(x) only tells what happens with the F -coordinate when changing charts,
we get

θβα(x) =

{
−IdF , x ∈ (−2/3,−1/3)

IdF , x ∈ (1/3, 2/3).
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Now choose K = Z2 to be the cyclic group of two elements and let it act
e�ectively on F by g.y = −y, where g is the generator of K. Under this
action the elements of K correspond exactly to the mappings IdF and −IdF ,
whence θβα(x) ∈ K for any x ∈ Uα ∩ Uβ. Moreover, θβα is constant on the
two components of the intersection and is thus continuous. Hence π : E → X
is a coordinate bundle.

De�nition 2. Let ξ = (E, π,X, F,K) and ξ′ = (E ′, π′, X ′, F,K) be two �bre
bundles with the �bre and structure group in common. A continuous mapping

f̄ : E → E ′

is called a bundle map from ξ to ξ′ if the following two conditions hold.

1. There exists a continuous mapping f : X → X ′ between the base spaces
such that π′ ◦ f̄ = f ◦ π, giving us the following commutative diagram:

E
f̄

- E ′

X

π

? f
- X ′

π′

?

2. For any coordinate neighbourhoods Uα of ξ and V ′µ of ξ′ such that Uα ∩
f−1V ′µ 6= ∅ we obtain a continuous mapping fµα : Uα ∩ f−1V ′µ → K
when de�ning

fµα(x) = φ′µ,f(x) ◦ f̄ ◦ φ−1
α,x for x ∈ Uα ∩ f−1V ′µ

If this happens while X = X ′ and f = Id, then the bundle map f̄ is
called an isomorphism and the �bre bundles are said to be isomorphic. This
is denoted ξ ' ξ′ or simply E ' E ′. A �bre bundle isomorphic to a product
bundle is called a trivial bundle or just trivial.

Clearly fµα(x) is a continuous mapping F → F for every x ∈ X. The
crucial thing is to demand that the values of fµα actually belong to K.
The point of the above de�nition is that we want to �nd a continuous f :
X → X ′ that makes the diagram commutative, and together with f̄ gives
transition functions for coordinate charts Uα and V ′µ overlapping in the sense
Uα ∩ f−1V ′µ 6= ∅.
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Remark. If f happens to be a homeomorphism, then f̄ is a homeomorphism
and its inverse f̄−1 is a bundle map too.

Proposition 1. The projection π : E → X of a �bre bundle is an open
mapping.

Proof. Exercise.

2 Principal bundles and associated bundles

De�nition 3. A �bre bundle is called a principal �bre bundle if F = K and
K acts on F by left translations, k.f = kf . For a principal bundle the total
space is often denoted by P and the bundle by (P, π,X,K).

Proposition 2. For a principal K-bundle there is a canonical free right K-
action on P such that each �bre π−1(x) is K-invariant w.r.t. this action. The
projection π induces a homeomorphism π̄ : P/K → X, where P/K denotes
the orbit space of this new action.

Proof. First de�ne a right K-action on Uα ×K by

(x, k).k′ = (x, kk′) for x ∈ Uα, k, k′ ∈ K.

This induces a right K-action on π−1Uα via φα : π−1Uα → Uα × K when
putting

z.k′ = φ−1
α (φα(z).k′) for z ∈ π−1Uα, k

′ ∈ K.

Let us show that the above action is independent from the choice of the
coordinate function φα. For this, suppose Uα ∩ Uβ 6= ∅ and φβ : π−1Uβ →
Uβ × K is another coordinate function. For z ∈ π−1(Uα ∩ Uβ) we have a
unique k ∈ K with φα(z) = (π(z), k). Now

φβ ◦ φ−1
α (φα(z).k′) = φβ ◦ φ−1

α ((π(z), k).k′) = φβ ◦ φ−1
α (π(z), kk′)

= (π(z), θβα(π(z))(kk′)) = (π(z), (θβα(π(z))k)k′)

= (π(z), (θβα(π(z))k)).k′ = (φβ ◦ φ−1
α (π(z), k)).k′

= φβ(z).k′,

whence φ−1
α (φα(z).k′) = φ−1

β (φβ(z).k′). This proves the claim and hence the
induced action is well-de�ned. (In the equations we �rst used just the fact
φ(z) = (π(z), k), then the de�nition of the action, then the de�nition of
θβα, then associativity of actions, then the de�nition of the action, then the
de�nition of θβα and �nally again the fact φα(z) = (π(z), k).)
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Now we've de�ned a right K-action on the total space P by de�ning it
on the sets π−1Uα that form an open covering of P . The action �rst de�ned
is free because (x, k).k′ = (x, k).k′′ i� kk′ = kk′′ i� k′ = k′′. Since the
second action is obtained through a homeomorphism from the �rst, it is also
free. Moreover, since the actions don't a�ect the �rst coordinates, each �bre
remains K-invariant under this action.

The projection π : P → X induces a continuous bijection π̄ : P/K → X
where P/K is the orbit space of the free right action above. Since π is open,
π̄ is open too and hence a homeomorphism.

Next we move to construct a so called associated bundle for a principal
bundle. First letX be a right G-space and Y a left G-space. Then G operates
on the space X × Y from the left by g.(x, y) = (xg−1, gy). Denote the orbit
space (X×Y )/G = X×

G
Y - this is called the twisted product of the G-spaces

X and Y . In the following we refer to the canonical right action from the
last proposition as �the right K-action�.

Proposition 3. Let π : P → X be a principal K-bundle and suppose K acts
e�ectively from the left on a topological space F . Then

p : P ×
K
F → X,

where p is de�ned by p([z, y]) = π(z) for z ∈ P, y ∈ F , is a �bre bundle with
�bre F and structure group K.

Proof. Let φ : π−1U → U × K be a coordinate function. Note that if
[z, y] = [z′, y′], then for some k ∈ K we have (z.k−1, k.y) = (z′, y′) and hence
z.k−1 = z′. Since the �bers of the principal bundle are invariant under the
right K-action, we see that π(z) = π(z′), whence p is well-de�ned.

Corresponding to φ, let us construct a mapping φ̄ : p−1U → U × F by
composition of 4 mappings φ1, φ2, φ3 and φ4, de�ned as follows:

Since

p−1U =

{
[z, y] ∈ P ×

K
F : π(z) ∈ U

}
=
{

[z, y] : z ∈ π−1U
}

= π−1U ×
K
F

we may let
φ1 = Id : p−1U → π−1U ×

K
F.

The second map is yielded from φ by putting

φ2 = φ×
K

Id : π−1U ×
K
F → (U ×K)×

K
F.
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The third map comes from the fact that twisted product obeys associa-
tivity on the level of homeomorphy, so that

φ3 : (U ×K)×
K
F ≡ U × (K ×

K
F ).

The fourth map is just the product of Id and the homeomorphism that
collapses K ×

K
F ≡ F :

φ4 : U × (K ×
K
F )→ U × F, (u, [k, f ]) 7→ (u, k.f)

Because the mappings φ1, φ2, φ3, φ4 are all homeomorphisms, so is their
composition φ̄ = φ4 ◦ φ3 ◦ φ2 ◦ φ1 : p−1U → U × F .

Let us show that φ̄ is a coordinate function. For this, suppose ψ : π−1V →
V ×K is another coordinate function and let θ : U∩V → K be the transition
function for φ and ψ, i.e. θ(x) = ψx◦φ−1

x . Let ψ1, . . . , ψ4 be mappings de�ned
as the mappings φ1, . . . , φ4 and denote their composition by ψ̄ : p−1V →
V × F . For x ∈ U ∩ V identify F with {x} × F . Then for any y ∈ F we get

ψ̄x ◦ φ̄−1
x (y) = ψ̄x ◦ φ̄−1(x, y) = ψ̄x ◦ φ−1

1 ◦ φ−1
2 ◦ φ−1

3 ◦ φ−1
4 (x, y)

= ψ̄x ◦ φ−1
2 ◦ φ−1

3 (x, [e, y]) = ψ̄x ◦ φ−1
2 ([(x, e), y])

= ψ̄x([φ
−1
x (e), y]) = ψ4 ◦ ψ3 ◦ ψ2([φ−1

x (e), y])

= ψ4 ◦ ψ3([(x, ψx ◦ φ−1
x (e)), y])

= ψ4 ◦ ψ3([(x, θ(x)e), y]) = ψ4(x, [θ(x)e, y])

= (x, θ(x)y) = θ(x)y

meaning that ψ̄x ◦ φ̄x
−1

= θ(x). Hence θ is the transition function for φ̄ and
ψ̄.

De�nition 4. The bundle obtained in the last proposition is called the bundle
associated with the principal bundle P .

The idea is to turn a principal bundle into a �bre bundle with a new �bre
but the same structure group. On the other hand, any �bre bundle carries
a principal bundle with it, called the principal bundle associated with the
�bre bundle. It is not hard to show the existence of this but we will not do
it here. However, one can prove that the associated principal bundle de�nes
the structure of the bundle in the following sense:

Proposition 4. Two �bre bundles having the same base, �bre and structure
group are isomorphic if and only if their associated principal bundles are
isomorphic.

Also, the principal bundles may be easier to handle than their associated
bundles, and the previous statement is useful when deciding whether two
bundles are isomorphic or not.
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3 Fibre products and induced bundles

De�nition 5. If X, Y and Z are G-spaces with f : X → Z, h : Y → Z
G-maps, then the subspace

X ×Z Y = {(x, y) ∈ X × Y : f(x) = h(y)}

is called the �bre product of X and Y .

The �bre product is also called the pull-back of Y via f . It is a G-space
under the diagonal G-action taking (g, (x, y)) 7→ (gx, gy): if f(x) = h(y),
then f(gx) = g.f(x) = g.h(x) = h(gx), since f and h are assumed to be
G-maps.

Let us now de�ne mappings f ′ : X ×Z Y → Z, h′ : X ×Z Y → Z
by just restricting the projections respectively. These are G-maps since the
projections are G-maps. This leads the following diagram, called the pull-
back diagram, to be commutative:

X ×Z Y
f ′

- Y

X

h′

? f
- Z

h

?

Fibre product has the following universal property:

Proposition 5. If X ×Z Y is a �bre product and W is such a G-space that
there exists G-maps α : W → X and β : W → Y with f ◦ α = h ◦ β, then
there is a unique G-map γ : W → X ×Z Y so that the following diagram
commutes:

W

X ×Z Y
f ′

-

γ

-

Y

β

-

X

h′

? f
-

α

-

Z

h

?
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Proof. Exercise.

Next we should prove some basic facts of the pull-back construction.

Proposition 6. 1. If f is surjective or injective, then so is f ′. If f is
bijective, then so is f ′.

2. If f is open, then so is f ′.
Similar results hold, of course, for h and h′ too.

Proof. Exercise.

The �bre product can be equipped with a structure of a �bre bundle in
a natural way.

Proposition 7. Let ξ = (E, π,X, F,K) be a �bre bundle and f : Y → X a
continuous function. Then the pull-back

Y ×X E
f ′

- E

Y

π′

? f
- X

π

?

yields a �bre bundle π′ : Y ×X E → Y with �bre F and structure group K.
Moreover, f ′ is a bundle map.

Proof. Since f is continuous, the sets f−1Uα, where Uα is a coordinate chart
for ξ, form an open covering for Y . De�ne ψα by

ψα : π′−1f−1Uα → f−1Uα × F, ψα(y, z) = (y, p′α ◦ φα(z)),

where p′α : Uα × F → F is the projection. The mappings ψα are well-
de�ned, since for any (y, z) ∈ π′−1f−1Uα we have f(y) = π(z) and hence
z ∈ π−1(f(y)) ⊂ π−1Uα. We need to show that ψα is a homeomorphism. It
has an inverse

ψ′α : f−1Uα × F → π′−1f−1Uα

de�ned by
ψ′α(y, b) = (y, φ−1

α,f(y)(b)),

because

ψ′α(ψα(y, z)) = ψ′α(y, p′α ◦ φα(z)) = (y, φ−1
α,f(y)(p

′
α ◦ φα(z))) = (y, z)

9



and similarily ψα(ψ′α(y, b)) = (y, b). One can easily check that ψ′α is well-
de�ned. The mappings ψα and ψ′α are clearly continuous, whence ψ is a
homeomorphism.

Note that for y ∈ Y we have π′−1(y) = {y} × π−1(f(y)) and de�ne

ψα,y : π′−1(y)→ F by ψα,y = q′α ◦ ψα

where q′α denotes the second projection f
−1Uα×F → F . But since ψα(y, z) =

(y, p′α ◦φα(z)), we get simply that ψα,y(y, z) = p′α ◦φα(z) = φα,f(y)(z). Hence,
for y ∈ f−1Uα ∩ f−1Uβ, we have

ψβ,y ◦ ψ−1
α,y = φβ,f(y) ◦ φ−1

α,f(y) = θβα(f(y)).

Denote τβα(y) = ψβ,y ◦ ψ−1
α,y and note that τβα(y) ∈ K according to the

equation above. Also, because θβα is continuous, so is τβα.
Hence we have shown that π′ : Y ×X E → Y is a �bre bundle with

coordinate functions ψα and transition functions ταβ.
Now it remains to show that f ′ is a bundle map. For this, let f−1Uα and

f−1Uβ be coordinate neighbourhoods in Y and for y ∈ f−1Uα∩ f−1Uβ de�ne

fβα(y) = φβ,f(y) ◦ f ′ ◦ ψ−1
α,y.

Then

fβα(y)(b) = φβ,f(y) ◦ f ′ ◦ ψ−1
α,y(y) = φβ,f(y) ◦ f ′(y, φ−1

α,f(y)(b))

= φβ,f(y) ◦ φ−1
α,f(y)(b) = θβα(f(y))(b) ∈ K

and
fαβ : f−1Uα ∩ f−1Uβ → K

is continuous. Therefore f ′ is a bundle map.

De�nition 6. The bundle obtained from the �bre product is called the in-
duced bundle of π : E → X via f : Y → X. It is denoted by f ∗ξ or f ∗E.

4 G-vector bundles

Until this, the �bre of a bundle has been just some e�ective K-space with no
additional structure required. One possibility is to demand the �bre to be a
vector space. This leads to the de�nition of a vector bundle:

De�nition 7. Let E and X be topological spaces with π : E → X a contin-
uous mapping. If it holds for every x ∈ X that
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1. there exists an open neighbourhood U of x and a homeomorphism φ :
π−1U → U × Rn with the familiar property p ◦ φ = π,

2. for any y ∈ U , the homeomorphism φ restricted to π−1(y) gives a linear
isomorphism

φ|π−1(y) : π−1(y)
'−→ {y} × Rn,

then (E, π,X) is called a vector bundle.

The sets π−1(y) are called �bers as with �bre bundles. We just demand
each �ber to have a n-dimensional vector space structure, inherited from the
coordinate chart homeomorphism.

Proposition 8. A vector bundle is a �bre bundle with �bre Rn and structure
group GL(n,R).

Proof. The claim is quite obvious but it is worth checking that GL(n,R) is
really the structure group.

For this, suppose Uα and Uβ are overlapping coordinate charts and x ∈
Uα ∩ Uβ. De�ne φα,x and φβ,x as usual and note that now they are linear
isomorphism. Then

θβα(x) = φβ,x ◦ φ−1
α,x : Rn → Rn

is a linear isomorphism as well, whence we have θβα(x) ∈ GL(n,R). The
mapping θβα : Uα ∩ Uβ → GL(n,R) is essentially the same as the restriction
of the continuous mapping

φβ ◦ φ−1
α |(Uα∩Uβ)×Rn : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

on the set {x}×Rn, whence it is seen to be continuous. Therefore GL(n,R)
is the structure group.

With vector bundles, we use the same terminology as with �bre bundles,
so that E is called the total space, X the base space etc.

Next we de�ne an important class of vector bundles. The di�erence is
that we have another topological group action involved.

De�nition 8. Suppose π : E → X is a vector bundle ξ with E and X being
G-spaces and π a G-map for some topological group G. We call ξ a G-vector
bundle, if for every g ∈ G and x ∈ X the action map

g : π−1(x)→ π−1(gx)

is a linear isomorphism.
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Let us now classify some of the mappings between G-vector bundles.
Suppose π : E → X and π′ : E ′ → X ′ are two G-vector bundles with such
G-maps f : X → X ′ and f̄ : E → E ′ that the following diagram commutes:

E
f̄

- E ′

X

π

? f
- X ′

π′

?

If f̄ is linear on the �bres Ex = π−1(x), i.e. if

f̄ |Ex : Ex → E ′f(x)

is linear for all x ∈ X, then f̄ is a G-bundle homomorphism. If the restrictions
are linear isomorphisms, then f̄ is called a G-bundle map. In the case X = X ′

and f = Id, a G-bundle map f̄ is called a G-bundle isomorphism.
If π : E → X is a G-vector bundle and f : Y → X is a G-map, take the

�bre product

f ∗E = Y ×X E = {(y, z) | f(y) = π(z)} ,

which is a G-set under the diagonal action, and note that the restrictions
of the natural projections are G-maps. Furthermore, we have the following
property.

Proposition 9. The construction π′ : f ∗E → Y is a G-vector bundle and
f ′ : f ∗E → E is a G-bundle map.

Proof. Exercise, see Proposition 7.

If π : E → X is a G-vector bundle and Y a G-subspace of the base-space,
then one can de�ne the restriction of π : E → X in Y in a natural way,
by taking the induced bundle via the inclusion Y ↪→ X. This is denoted by
π : E|Y → X where E|Y = π−1Y

The restriction of a G-vector bundle comes from a G-subspace of the
base-space. If we start with a G-subset of the total space instead, we can
de�ne another structure as follows: Let π : E → X be a G-vector bundle. If
a G-subspace E ′ ⊂ E and the restricted mapping π′ = π|E ′ satisfy

1. E ′x = E ′ ∩ Ex is vector subspace of Ex for every x ∈ X,

2. π′ : E ′ → X is a G-vector bundle such that the vector space structure
of the �bers is the same as above,
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then E ′ is called a G-vector sub-bundle of E.

Example 4. Let π : E → X and π′ : E ′ → X be two G-vector bundles
over a G-space X. Their product together with the product of the projections
π × π′ : E × E ′ → X ×X is a G-vector bundle, called the product of E and
E ′ (the base spaces need not to be the same).

Now we want to consider the �bre bundle induced by the diagonal mapping

d : X → X ×X, d(x) = (x, x),

which is clearly a G-map. The induced bundle π′′ : d∗(E × E ′) → X is
called the Whitney sum of E and E ′ and denoted E ⊕ E ′. Remember that
the total space of this is {(x, (y, y′)) ∈ X × (E × E ′) | d(x) = π × π′(y, y′)},
whence we see that the �bers are of the form

(E ⊕ E ′)x = π′′−1(x) = {(x, (y, y′)) | d(x) = π × π′(y, y′)}
' {(y, y′) | π(y) = π′(y′) = x} = Ex × E ′x,

where Ex × E ′x denotes the direct sum of the vector spaces Ex and E ′x.

Let us now give two statements without proving them.

Lemma 1. Let π : E → X be a G-vector bundle. If E1 and E2 are G-vector
sub-bundles such that for each x the �bre Ex is the direct sum of E1x and
E2x, then E is isomorphic to the Whitney sum E1 ⊕ E2.

Proof. Exercise.

The previous lemma is useful when proving the following proposition that
tells us a bit more about the nature of G-vector sub-bundles.

Proposition 10. Let π : E → X be a G-vector bundle and π′ : E ′ → X its
G-vector sub-bundle. For each x there exists an open neighbourhood U and
a homeomorphism φ : π−1U → U × Rn such that the restriction

φ|π′−1U : π′−1U → U × Rm

is also a homeomorphism for some m ≤ n.

Proof. Exercise.

Next we begin to study quotient structures. Let π : E → X be a G-vector
bundle and π′ : E ′ → X its G-vector sub-bundle. De�ne a relation ∼ in E
by putting

z ∼ z′ ⇐⇒ π(z) = π(z′) and z − z′ ∈ E ′π(z)
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Note that ∼ is clearly re�exive and symmetric. It is an equivalence relation
because transitivity holds too: z − z′′ = z − z′ + z′ − z′′ ∈ E ′π(z) = E ′π(z′) if
z− z′ ∈ E ′π(z) and z

′− z′′ ∈ E ′π(z′) because these are vector spaces. Hence we

can de�ne the quotient space E/ ∼, denoted E/E ′.
What happens here is that we say two elements are equivalent if they lie

in the same �ber and are equivalent in the usual sense with respect to the
vector subspace of the �ber.

If p is the natural projection E → E/E ′ that takes z 7→ z + E ′π(z), then

p coinduces a topology to E/E ′. With respect to this topology, we �nd a
continuous mapping π̄ such that the following diagram commutes

E
p

- E/E ′

X
�

π̄
π

-

It can be shown that in fact π̄ : E/E ′ → X is a G-vector bundle, called
the quotient G-vector bundle of E by E ′. In particular, the �bers of this
bundle are easy to �nd:

(E/E ′)x = π̄−1(x) = pπ−1(x) = pEx = Ex/E
′
x.

5 The classi�cation of G-vector bundles over

G/H

For this last section, remember the de�nitions of cross-sections and represen-
tation spaces:

If f : X → Y and s : Y → X are continuous mappings such that f
is surjective and f ◦ s = IdY , then s is called a cross-section of f . If this
happens only locally, i.e. each y ∈ Y has an open neighbourhood U and a
cross-section sU : U → X for the restriction f |f−1U , then f is said to have a
local cross-section.

When a group G acts on a vector space V such that every g ∈ G acts
linearly, then V together with the action of G is called a G-representation
space. The idea here is that every element of the group is seen as a transfor-
mation of the vector space. For example, when the base space of a G-vector
bundle consists of only one point, then the total space is a G-representation
space.
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Now suppose G is a topological group, H a closed subgroup of G, and
let π : E → G/H be a G-vector bundle. We can easily show that the �bre
π−1(eH) is a H-representation space: by assumption the action mappings
g : π−1(xH) → π−1(gxH) are linear isomorphism. For h ∈ H ⊂ G they get
the form

h : π−1(eH)→ π−1(eH)

since eH is �xed by H and hence π−1(eH) is H-invariant. This is to say that
the �bre π−1(eH) is a H-representation space.

Denote V = π−1(eH) and let H act on G × V by h.(g, v) = (gh−1, hv)
and on G by h.g = gh−1. Then the projection G×V → G is clearly a H-map
and hence induces a map q : G×

H
V → G/H between the orbit spaces:

G× V
p

- G×
H
V

G

p

? p′
- G/H

q

?

This leads to the following theorem.

Proposition 11. If we de�ne a map f : G×
H
V → E by f([g, v]) = gv, then

f is a G-homeomorphism and the following diagram commutes:

G×
H
V

f
- E

G/H
�

πq
-

Proof. We are going to show the homeomorphy directly, i.e. �nding a con-
tinuous inverse f ′ for f .

First note that f itself is a well-de�ned and continuous G-map: if [g, v] =
[g′, v′], then (g, v) = h.(g′, v′) and hence g = g′h−1 and v = hv′ for some
h ∈ H. Now f([g, v]) = gv = g′h−1hv′ = g′v′ = f([g′, v′]), whence f is well-
de�ned. Continuity, in turn, follows from the continuity of the G-action.
Finally, if g′ ∈ G, then f(g′.[g, v]) = f([g′g, v]) = g′gv = g′f([g, v]), whence
f is a G-map.
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Let us now construct the mapping f ′. Take z ∈ E and suppose π(z) = gH
for g ∈ G. Put v = g−1z and note that since π is a G-map, we get

π(v) = g−1π(z) ∈ g−1(gH) = H = eH,

which is to say that v ∈ π−1(eH) = V . Now de�ne a G-map f ′ : E → G×
H
V

by putting f ′(z) = [g, v]. At least this a very good candidate for the inverse
of f , because

(f ◦ f ′)(z) = f([g, v]) = gv = g(g−1z) = z

and
(f ′ ◦ f)[g, v] = f ′(gv) = [g, g−1gv] = [g, v].

It remains to show that f ′ is well-de�ned and continuous.
For well-de�nement, suppose we have another representation π(z) = g′H

and choose v′ = g′−1z. Since g−1g′H = H we �nd an element h ∈ H such
that g−1g′ = h. Then clearly

g′h−1 = g′g′−1(g−1)−1 = g

and
hv′ = g−1g′g′−1z = g−1z = v,

showing that [g′, v′] = [g′h−1, hv′] = [g, v]. This is to say that f ′ is well-
de�ned.

Next step is to show that f ′ is continuous, which requires a little more
work with diagrams.

Let us start with the pull-back diagram

G×G/H E
p′

- E

G

π′

? p
- G/H

π

?

where G ×G/H E = {(g, z) ∈ G× E | p(g) = π(z)}. Remember that since p
is surjective and open, so is p′ too.

De�ne f1 : G × E → G × E by putting f1(g, z) = (g, g−1z). Then
f1 is continuous, and if (g, v) ∈ G × V is arbitrary, then v ∈ π−1H and
p(g) = gH = g(vH) = gπ(v) = π(gv), meaning that (g, gv) ∈ G×G/H E and
f1(G×G/H E) = G× V .
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Choose q1 to be the projection G × V → G ×
H
V and continue to the

following diagram

G×G/H E
f1 - G× V

E

p

?

′

f ′
- G×

H
V

q1

?

This shows that f ′ is continuous, because q1 and f1 are continuous, p
′ is open

and surjective, and, what's most important, the diagram commutes:

(q1 ◦ f1)(g, z) = q1(g, g−1z) = [g, g−1z]

and
(f ′ ◦ p′)(g, z) = f ′(z) = [g, g−1z]

Now we have shown that the G-mapping f ′ is continuous inverse for the
continuous G-mapping f , whence f is a G-homeomorphism.

Proposition 12. Let G be a topological group and H its closed subgroup.
Then the projection p : G → G/H has a local cross-section if and only if
p : G→ G/H is a principal H-bundle.

Proof. For a principal bundle p : G→ G/H, one can show that the mappings
sα : Uα → π−1Uα, sα(x) = φ−1

α (x, e) form a local cross-section for p.
For the other direction, assume that p has a local cross-section. Then

the neutral element eH has an open neighbourhood U with a continuous
mapping s : U → G satisfying p◦s = IdU . We will construct the �bre bundle
structure for p : G→ G/H using this mapping.

Let us begin by de�ning the following mappings

φ : p−1U → U ×H, φ(g) = (p(g), (s(p(g)))−1g)

and
φ′ : U ×H → p−1U, φ′(u, h) = s(u)h.

A direct calculation gives

(φ ◦ φ′)(u, h) = φ(s(u)h) = (p(s(u)h), ((s(p(s(u)h)))−1s(u)h))

= (p(s(u)), ((s(p(s(u))))−1s(u)h)) = (u, s(u)−1s(u)h) = (u, h)
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and

(φ′ ◦ φ)(g) = φ′(p(g), (s(p(g)))−1g) = s(p(g))(s(p(g)))−1g = g,

whence φ and φ′ are inverses for each other. Since both are continuous, they
are homeomorphisms too.

Since U is a neighbourhood for the neutral element eH, we know that
g0U is a neighbourhood for an arbitrary element g0H ∈ G/H. We can de�ne
a cross-section sg0 : g0U → G for this neighbourhood in a natural way by
putting

sg0(x) = g0s(g
−1
0 x), x ∈ g0U.

Using the same idea as above, we continue to de�ne mappings

φg0 : p−1(g0U)→ g0U ×H, φg0(g) = (p(g), (sg0(p(g)))−1g)

and

φ′g0 : g0U ×H → p−1(g0U), φ′g0(x, h) = sg0(x)h = g0s(g
−1
0 x)h.

One can see clearly that the calculations done above with φ and φ′ go also
with the mappings φg0 and φ′g0 , whence they are each other's inverses and
thus homeomorphisms.

Now we have managed to de�ne the coordinate functions and neighbour-
hoods quite easily using the local cross-section s : U → G. The next step is
to �nd the transition functions. It turns out that this is easy and straight-
forward too.

If g0, g1 ∈ G and the charts g0U and g1U are overlapping such that there
exists some x ∈ g0U ∩ g1U , then

(φg1 ◦ φ′g0)(x, h) = φg1(sg0(x)h)

= (p(sg0(x)h), (sg1(p(sg0(x)h)))−1sg0(x)h)

= (x, sg1(x)−1sg0(x)h).

In the beginning of this material we mentioned that the equation above is
often used to de�ne transition mappings, which is what we will do now. Note
that since sg0(x)H = sg1(x)H, we have sg1(x)−1sg0(x) ∈ H, and hence we
are able to de�ne

θg1g0 : g0U ∩ g1U → H, θg1,g0(x) = sg1(x)−1sg0(x).

The mapping θg1g0 so obtained is continuous since it is a composition of three
continuous mappings.

18



Therefore we have shown that p : G → G/H is a principal �bre bundle
with structure group and �bre H, coordinate functions φg0 and transition
functions θg1g0 .

The previous proposition has its consequenses in the theory of Lie groups,
since one can show that whenever G is a Lie group and H its closed subgroup,
the projection p : G→ G/H has a local cross-section.

The following statement yields a classi�cation for G-vector bundles over
G/H.

Proposition 13. Suppose p : G → G/H has a local cross-section. If V is
an H-representation space, then q : G ×

H
V → G/H is a G-vector bundle,

where q is as in the discussion before Proposition 11. Furthermore, q−1(eH)
is isomorphic to V as H-representation spaces.

Proof. Since p : G→ G/H has a local cross-section, it is a principal bundle.
Eventhough H doesn't necessarily act e�ectively on V , we can consider the
associated bundle q : G×

H
V → G/H. By making use of the H-representation,

we can think that the transition mappings of p go into GL(n,R), whence the
bundle becomes a vector bundle. ThenG×

H
V is aG-space by g.[g′, v] = [gv′, v]

and, furthermore, one can show that that the mappings

g : q−1(g0H)→ gg0H

are linear, whence the bundle q : G ×
H
V → G/H is actually a G-vector

bundle. The last claim follows from the fact that the action of H on q−1(eH)
coincides with the action of H on V :

h.[e, v] = [h, v] = [e, hv].

Corollary 1. If p : G→ G/H has a local cross-section, then the assignment
V 7→ G×

H
V gives a one-to-one correspondence between isomorphism classes

of H-representation spaces and isomorphism classes of G-vector spaces over
G/H.

Corollary 2. If p : G→ G/H has a local cross-section, then G×
H
V → G/H

is a �bre bundle for any e�ective H-space F . (The �ber of this is F and
structure group H.)
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