Topology I

Exercise 2, spring 2012
1 (1:7, a part). Consider the norms $|x|=$ the usual Euclidean norm, $|x|_{1}=$ $\left|x_{1}\right|+\cdots+\left|x_{n}\right|$ and $|x|_{\infty}=\max \left(\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right)$ in \mathbf{R}^{n}. Show that
(a) $|x|_{\infty} \leq|x| \leq|x|_{1} \leq n|x|_{\infty}$ for all $x \in \mathbf{R}^{n}$,
(b) $|x|_{1} \leq \sqrt{n}|x|$ for all $x \in \mathbf{R}^{n}$.

Tips. At the part (a), for the middle inequality, write $x=\sum_{i=1}^{n} x_{i} e_{i}$ and apply the triangle inequality. At (b) apply the Schwarz's inequality to the vectors $\left(\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right)$ and $(1, \cdots, 1)$.

2 (1:10). Show that the equation $\|x\|=\max \left\{\left|x_{1}\right|+\left|x_{2}\right|, 2\left|x_{1}\right|\right\}$ defines a norm in the plane \mathbf{R}^{2}. Draw also the unit sphere $S=\left\{x \in \mathbf{R}^{2} \mid\|x\|=1\right\}$.
Tips. Study first separately the components (defining the norm) of norms of $x+y$ and $a x$. At the end part the unit spheres again separately given by the components of norm, and draw a conclusion.
3. Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbf{R}^{2}$. Study whether the mapping

$$
d(x, y)=\left|x_{1}^{5}-y_{1}^{5}\right|+\left|x_{2}^{3}-y_{2}^{3}\right|
$$

is a metric in the set \mathbf{R}^{2}.
4. Determine the ball $B(a, 3)$ in \mathbf{R}^{2}, when $a=(-1,1)$ and the used metric is $d(x, y)=\left|x_{1}-y_{1}\right|+2\left|x_{2}-y_{2}\right|$, where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. It is not necessary to show that d is a metric, but also you can do it. (How most easily?)
A tip. Set first $a=(0,0)$ and then transfer.
5. Let $X=\{x \in \mathbf{R} \mid x>0\}$, and define in the set $X \times X$ a real valued mapping

$$
d(x, y)=\left|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right|, \quad x, y \in X
$$

Show that d is a metric in the set X.
6. (2:13) Let $E=\operatorname{raj}([0,1], \mathbf{R})$ equipped with the supnorm. Determine the distance $d(A, B)$ between its subsets $A=\left\{f_{n}:[0,1] \rightarrow \mathbf{R} \mid f_{n}(x)=x^{n}, n \in \mathbf{N}\right\}$ and $B=\{f:[0,1] \rightarrow \mathbf{R} \mid f$ is a constant function $\}$.
A tip. Have a look at a certain constant function against that the other ones are compared.

