Topology I

Exercise 9, spring 2012

1. Let $\left(f_{n}\right)$ be a sequence of continuos functions $f_{n}:[a, b] \rightarrow \mathbf{R}$ that converge uniformly on $[a, b]$ to a function $f:[a, b] \rightarrow \mathbf{R}$. Show that then

$$
\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x
$$

Why do the integrals exist? Briefly, does the corresponding result hold to derivatives?
2. Let $A=\left\{(x, y) \in \mathbf{R}^{2} \mid 0<y<x^{2}\right\}$ and $B=\mathbf{R}^{2} \backslash A$. Obviously $\mathbf{0}=(0,0) \in \bar{A}$ and $\mathbf{0} \in \bar{B}$ (an illustrating figure for yourself). Define a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by

$$
f(z)=f(x, y)= \begin{cases}1, & \text { when } z=(x, y) \in A \\ 0, & \text { when } z=(x, y) \in B\end{cases}
$$

(a) Give $\lim _{z \rightarrow \mathbf{0}, z \in A} f(z)$ and $\lim _{z \rightarrow \mathbf{0}, z \in B} f(z)$ taken through A and B.
(b) What conclusion do those limits offer, if continuity of f at $\mathbf{0}$ is asked?
(c) Show that $\lim _{z \rightarrow \mathbf{0}, z \in L} f(z)=0$ for all straight line L passing through the origin.

3 (12:11). Let X be a complete metric space and $f: X \rightarrow Y$ bilipschitz. Show that the image set $f X$ is complete and thus closed in Y.

4 (12:7). (a) Let X be a complete metric space and $A_{1} \supset A_{2} \supset \cdots$ a nested sequence of closed nonempty subsets of it such that the diameters $d\left(A_{n}\right)$ converge to zero. Show that the intersection of sets A_{n} has precisely one point then.
(b, adaption) Give an example of subsets U_{n} in \mathbf{R} that are like A_{n} in item (a), but are open instead of being closed, and however their intersection is empty.
A tip. (a) Choose for every $n \in \mathbf{N}$ a point $x_{n} \in A_{n}$ and consider the sequence $\left(x_{n}\right)$. Completeness of X is necessary here.

5 (12:14). Let $(E,\|*\|)$ be a complete normed space, that is a Banach space, and let $f: E \rightarrow E$ be a contraction. Show that the equality $F(x)=x+f(x)$ defines a homeomorphism $F: E \rightarrow E$ that is bilipschitz.
Tips. Fix $y \in E$ and denote $g_{y}(x)=y-f(x)$. Show that the mapping $g_{y}: E \rightarrow E$ has precisely one fixed point $G(y)$, when they together define the mapping G : $E \rightarrow E, y \mapsto G(y)$. Then show that $F \circ G=G \circ F=i d_{E}$ and that F is bilipschitz. Pay special attention to the "left side" inequality $m\|x-z\| \leq\|F(x)-F(z)\|$ for all $x, z \in E$, where the constant must satisfy $m>0$.

6 (12:15, a part). Study whether the following functions $f: \mathbf{R} \rightarrow \mathbf{R}$ are uniformly continuous on \mathbf{R} :
(a) $f(x)=\frac{x}{1+x^{2}}$,
(b) $\quad f(x)=x^{1 / 3}$.

A tip. The mean value theorem can be useful.

