Topology I

Exercise 9, spring 2012

1. Let (f_n) be a sequence of continuos functions $f_n:[a,b]\to \mathbf{R}$ that converge uniformly on [a,b] to a function $f:[a,b]\to \mathbf{R}$. Show that then

$$\int_a^b f_n(x) dx \to \int_a^b f(x) dx.$$

Why do the integrals exist? Briefly, does the corresponding result hold to derivatives?

2. Let $A = \{(x, y) \in \mathbf{R}^2 \mid 0 < y < x^2\}$ and $B = \mathbf{R}^2 \setminus A$. Obviously $\mathbf{0} = (0, 0) \in \bar{A}$ and $\mathbf{0} \in \bar{B}$ (an illustrating figure for yourself). Define a function $f : \mathbf{R}^2 \to \mathbf{R}$ by

$$f(z) = f(x,y) = \begin{cases} 1, & \text{when } z = (x,y) \in A, \\ 0, & \text{when } z = (x,y) \in B. \end{cases}$$

- (a) Give $\lim_{z\to \mathbf{0}, z\in A} f(z)$ and $\lim_{z\to \mathbf{0}, z\in B} f(z)$ taken through A and B.
- (b) What conclusion do those limits offer, if continuity of f at $\mathbf{0}$ is asked?
- (c) Show that $\lim_{z\to 0, z\in L} f(z) = 0$ for all straight line L passing through the origin.
- 3 (12:11). Let X be a complete metric space and $f: X \to Y$ bilipschitz. Show that the image set fX is complete and thus closed in Y.
- 4 (12:7). (a) Let X be a complete metric space and $A_1 \supset A_2 \supset \cdots$ a nested sequence of closed nonempty subsets of it such that the diameters $d(A_n)$ converge to zero. Show that the intersection of sets A_n has precisely one point then.

(b, adaption) Give an example of subsets U_n in \mathbf{R} that are like A_n in item (a), but are open instead of being closed, and however their intersection is empty.

A tip. (a) Choose for every $n \in \mathbb{N}$ a point $x_n \in A_n$ and consider the sequence (x_n) . Completeness of X is necessary here.

5 (12:14). Let (E, || * ||) be a complete normed space, that is a Banach space, and let $f: E \to E$ be a contraction. Show that the equality F(x) = x + f(x) defines a homeomorphism $F: E \to E$ that is bilipschitz.

Tips. Fix $y \in E$ and denote $g_y(x) = y - f(x)$. Show that the mapping $g_y : E \to E$ has precisely one fixed point G(y), when they together define the mapping $G : E \to E$, $y \mapsto G(y)$. Then show that $F \circ G = G \circ F = id_E$ and that F is bilipschitz. Pay special attention to the "left side" inequality $m||x-z|| \leq ||F(x)-F(z)||$ for all $x, z \in E$, where the constant must satisfy m > 0.

6 (12:15, a part). Study whether the following functions $f: \mathbf{R} \to \mathbf{R}$ are uniformly continuous on \mathbf{R} :

(a)
$$f(x) = \frac{x}{1+x^2}$$
, (b) $f(x) = x^{1/3}$.

A tip. The mean value theorem can be useful.