Topology I

Exercise 7, spring 2012

1. Is the function $f:[0,10] \rightarrow \mathbf{R}, f(x)=x^{3}+x$, (a) Lipschitz, (b) bilipschitz, (c) an embedding?

A tip. The mean value theorem.
2. Consider the surface $A=\left\{(x, y, z) \in \mathbf{R}^{3} \mid z=\sin x+\cos y\right\}$ in \mathbf{R}^{3}, equipped with the Euclidean metric. Suppose it is known that the function

$$
f: A \rightarrow \mathbf{R}^{2}, \quad f(x, y, z)=(x, y) \quad \text { when }(x, y, z) \in A
$$

is a bijection. Show that it is a homeomorphism and thus $A \approx \mathbf{R}^{2}$. As known, the functions $\sin , \cos : \mathbf{R} \rightarrow \mathbf{R}$ are continuous.
3. Let $x \in X$ and $\emptyset \neq A \subset X$. The condition $d(x, A)>0$ is a topological property (closure!). Let $f:(X, d) \approx(Y, e)$ be a homeomorphism. Show that really $e(f(x), f(A))>0$, if $d(x, A)>0$.
A tip. Suitable theorems are for example 6.11 and 6.12.
Remark. Be careful in, what is or is not a topological property. For example $d(A, B)>0$ is not.

4 (10:1). The mapping $e: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}_{+}, e(x, y)=\sqrt{|x-y|}$, is a metric in \mathbf{R} (need not to prove). Is it (a) equivalent, (b) bilipschitz equivalent with the usual Euclidean metric d in \mathbf{R} ?
A tip. Better to study continuity and Lipschitz continuity in the identical mapping by using their original definitions.

As quite a difficult one, the following problem is worth of two points:
5 (9:5, an adaptation). Construct a homeomorphism $f: B^{2} \approx \mathbf{R}^{2}$, where $B^{2}=$ $\left\{x \in \mathbf{R}^{2}| | x \mid<1\right\}$ is the open unit disk in the plane. Do you find the inverse mapping?
A tip. Move radially, that is, multiply a unit vector $x /|x|$, and therefore consider the corresponding situation in \mathbf{R} (geometrically or you can also use the function $\tan :[0, \pi / 2[\rightarrow[0, \infty[$, as well $)$.

Remark. Everyone can participate in the compensating 1. course exam 12.3.

