Topology I

Exercise 5, spring 2012

1. Study if the following subsets are closed in the Euclidean plane \mathbf{R}^{2} :
(a) $A_{k}=\left\{(x, y) \in \mathbf{R}^{2}|1 /(k+1) \leq|(x, y)| \leq 1 / k\}\right.$, where $k \in \mathbf{N}$,
(b) $A=\bigcup_{k \in \mathbf{N}} A_{k}$.

If not, determine the closure. Tips. Continuous functions, when considering closure, part (4) in Theorem 6.8 is useful.
2. Is the subset $A=\left\{(x, y) \in \mathbf{R}^{2} \mid x>0, y=\sin (1 / x)\right\}$ cosed in \mathbf{R}^{2} ? If not, determine its closure. Which are cluster points? Any proof is not now needed, only a short answer.
Tips. Draw a figure. Where do the points $\left(x_{k}, \sin \left(1 / x_{k}\right)\right) \in A$ accumulate, when $x_{k}=1 /(\pi / 2+k \pi)$ and $k \in \mathbf{N}$ is even or odd. Bolzano.
3. (6:12) Suppose $f, g: X \rightarrow Y$ are continuous functions and $A \subset X$ such that $f|A=g| A$. Show that $f|\bar{A}=g| \bar{A}$.
4. (6:8) Let E be an inner product space and $A \subset E$. Show that the orthogonal complement $A^{\perp}=\{x \in E \mid\langle x, a\rangle=0$ for all $a \in A\}$ of A is closed in E. Thus A^{\perp} is a closed subspace of E (problem 4 in the first exercise).
Tips. An inner product (function) is continuous. Represent A^{\perp} for instance as an intersection.
5. (7:3 a part) Determine the closure of a set $A \subset B^{2}=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}<1\right\}$ in the Euclidian space B^{2}, when

$$
\text { (a) } A=\left\{(x, 0) \in B^{2} \mid-1<x<1\right\}, \quad \text { (b) } A=\left\{(x, y) \in B^{2} \mid x+y>0\right\} .
$$

Is A closed in B^{2} ? A tip. Perhaps first the closure in \mathbf{R}^{2}.
6. Define the function $f:[-1,2] \rightarrow \mathbf{R}$ by the equality

$$
f(x)= \begin{cases}-x+1, & \text { when } \quad-1 \leq x \leq 0 \\ -2 x^{2}+x+1, & \text { when } \quad 0<x \leq 1 \\ x^{3}-x, & \text { when } \quad 1<x \leq 2\end{cases}
$$

Show that it is continuous. A tip. Theorem 7.13.
Remark. The first course exam 28.2., as well as the compensating one 12.3., includes Chapters 1-7 in Väisälä. Recall that a canditate can use a short abstract of size A4. Exercise 6 takes place first week of the 4. period, 12.-16.3.

