Topology I

Exercise 4, spring 2012

1 (4:5). Suppose $f: X \to Y$ and $g: Y \to Z$ are Lipschitz-functions with L-constants M and N. Show that the composition function $g \circ f: X \to Z$ is MN-Lipschitz.

2. The function $f: [-2, 2] \to \mathbf{R}$ is defined by $f(x) = x^2/2 - x^3/3$. By using the mean value theorem determine $M \ge 0$ such that f is M-Lipschitz.

3. Let (E, |*|) be a norm space, and let fix two points x and y in E. The equality

$$h(t) = (1-t)x + ty$$
 for $t \in [0,1]$

defines a function $h: [0,1] \to E$, the graph of which is the line segment connecting x ja y in E. Show that h is continuous.

4. (4:4, about). Suppose $E = C([0, 1], \mathbf{R})$ is equipped with the support and the metric defined by that. For every $f \in E$ the equality

$$\alpha(f)(x) = 5xf(x) \quad \text{for } x \in [0,1]$$

defines a function $\alpha(f): [0,1] \to \mathbf{R}$.

(a) Show that $\alpha(f)$ is continuous, i.e. $\alpha(f) \in E$.

(b) From part (a) it follows that we have a mapping $\alpha : E \to E, f \mapsto \alpha(f)$. Show that α is continuous.

(c) Show that α is Lipschitz.

A tip. In part (a) Chapter 5 in Väisälä.

5. Consider the subset

$$A = \{ (x, y) \in \mathbf{R}^2 \, | \, x^2 - x < y < 2x \}$$

in the Euclidean \mathbb{R}^2 . Show that A is an open set.

A tip. Recall continuous functions and Chapter 5.

6. Suppose $f, g: X \to \mathbf{R}$ are continuous functions. Show that then also

(a) the maximum function $h: X \to \mathbf{R}$, where $x \mapsto h(x) = \max\{f(x), g(x)\}$, is continuous,

(b) the absolute value function $|f|: X \to \mathbf{R}$, where $x \mapsto |f|(x) = |f(x)|$, is continuous.

Tips. (a) Fix $a \in X$, when you can suppose h(a) = f(a), and you get a neighbourhood of a needed as an intersection of two neighbourhoods. (b) Use (a).

