Topology I

Exercise 4, spring 2012
1 (4:5). Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are Lipschitz-functions with Lconstants M and N. Show that the composition function $g \circ f: X \rightarrow Z$ is $M N$-Lipschitz.
2. The function $f:[-2,2] \rightarrow \mathbf{R}$ is defined by $f(x)=x^{2} / 2-x^{3} / 3$. By using the mean value theorem determine $M \geq 0$ such that f is M-Lipschitz.
3. Let $(E,|*|)$ be a norm space, and let fix two points x and y in E. The equality

$$
h(t)=(1-t) x+t y \quad \text { for } t \in[0,1]
$$

defines a function $h:[0,1] \rightarrow E$, the graph of which is the line segment connecting x ja y in E. Show that h is continuous.
4. (4:4, about). Suppose $E=C([0,1], \mathbf{R})$ is equipped with the supnorm and the metric defined by that. For every $f \in E$ the equality

$$
\alpha(f)(x)=5 x f(x) \quad \text { for } x \in[0,1]
$$

defines a function $\alpha(f):[0,1] \rightarrow \mathbf{R}$.
(a) Show that $\alpha(f)$ is continuous, i.e. $\alpha(f) \in E$.
(b) From part (a) it follows that we have a mapping $\alpha: E \rightarrow E, f \mapsto \alpha(f)$. Show that α is continuous.
(c) Show that α is Lipschitz.

A tip. In part (a) Chapter 5 in Väisälä.
5. Consider the subset

$$
A=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-x<y<2 x\right\}
$$

in the Euclidean \mathbf{R}^{2}. Show that A is an open set.
A tip. Recall continuous functions and Chapter 5.
6. Suppose $f, g: X \rightarrow \mathbf{R}$ are continuous functions. Show that then also
(a) the maximum function $h: X \rightarrow \mathbf{R}$, where $x \mapsto h(x)=\max \{f(x), g(x)\}$, is continuous,
(b) the absolute value function $|f|: X \rightarrow \mathbf{R}$, where $x \mapsto|f|(x)=|f(x)|$, is continuous.
Tips. (a) Fix $a \in X$, when you can suppose $h(a)=f(a)$, and you get a neighbourhood of a needed as an intersection of two neighbourhoods. (b) Use (a).

