Topology I

Exercise 3, spring 2012

1. (2:12) Let be $E = raj([0, 1], \mathbf{R})$ equipped with the supnorm and the metric induced by that. Determine d(A) for $A = \{f_n : [0, 1] \to \mathbf{R} \mid f_n(x) = x^n, n \in \mathbf{N}\}$. A tip. Draw graphs. Calculate $\lim_{n \to \infty} (x - x^n)$ for $0 \le x < 1$?

2. Which of the following subsets of \mathbf{R}^2 are open: (a) $A = \{(x, y) \in \mathbf{R}^2 | x = 2y^2\}$, (b) $B = A^c$, (c) $C = \{(x, y) \in \mathbf{R}^2 | \sin x^2 > y\}$? A one word answer is enough.

3 (3:3). Let X be a metric space, $G \subset X$ open and $F \subset X$ finite. Show that the set $G \setminus F$ is open.

4. Let X be a metric space, a mapping $f : X \to \mathbf{R}$ continuous at $a \in X$ and f(a) > 0. Show that a has a neighbourhood $U \subset X$ such that f(x) > f(a)/2 for all $x \in U$.

5 (4:8, a part). Let

$$f(\mathbf{0}) = 0$$
 and $f(x, y) = \frac{xy^2}{x^2 + y^4}$ for $(x, y) \neq \mathbf{0}$.

Show that the function $f : \mathbf{R}^2 \to \mathbf{R}$, defined by that, is discontinuous at the origin.

6. Consider the space of all continuous functions $f : [0,1] \to \mathbf{R}$, $E = C([0,1], \mathbf{R})$, equipped with the supnorm $||f||_{\infty} = \max\{|f(x)| : x \in [0,1]\}$ (as known, here sup is max) and the metric induced by that. Which of the following sets are open in E (arguments):

(a) $A = \{ f \in E : ||f||_{\infty} > 0 \},$ (b) $B = \{ f \in E | f(x) > 0 \ \forall x \in [0, 1] \},$

(c) $C = \{ f \in E \mid f(1/n) > 0 \ \forall n \in \mathbf{N} \}$?

Tips. (a) A complement, (b) a continuous function $f : [0,1] \to \mathbf{R}$ attains its maximum and minimum, (c) an appropriate $f \in C$.

1