Topology I

Exercise 11, spring 2012
1 (14:12, adaption). Consider the subset $E=\left\{(x, y) \in \mathbf{R}^{2}:|x|>|y|\right\}$ of \mathbf{R}^{2}.
(a) Is E connected?
(b) Is the closure \bar{E} connected?

Tips. (b) Intervals with begins at the origin, i.e. pathwise connectivity. Draw a figure for yourself.
2. Consider the subsets of \mathbf{R}^{2} as in problem 1 of exercise 10:
$A_{1}=\left\{(x, y) \mid x^{2} / 3+y^{2} \leq 4\right\}, A_{2}=\left\{(x, y) \mid x^{2} y^{2}=1\right\}, A_{3}=\left\{(x, y) \mid x^{2}+y^{2}<4\right\}$.
Which of those are connected? Domains in \mathbf{R}^{2} ?
A tip. The same strategy as in problem 1.
3. Let (X, d) be a metric space and $I=[0,1]$. Let $\alpha: I \rightarrow X$ and $\beta: I \rightarrow X$ be paths such that $\alpha(1)=\beta(0)$, that is, the end point of the first one is the starting point of the second one. Construct by using α and β paths $\gamma: I \rightarrow X$ and $\eta: I \rightarrow X$ of X such that $\gamma(I)=\eta(I)=\alpha(I) \cup \beta(I), \gamma(0)=\alpha(0)$ and $\gamma(1)=\beta(1)$, on the other hand $\eta(0)=\beta(1)$ and $\eta(1)=\alpha(0)$. One can say that γ goes α and β in succession and η in turn does it backwards.
A tip. Define in pieces.
4 (14:4). Let $A \subset \mathbf{R}, A \neq \emptyset$ and $X=A \times[0,1] \subset \mathbf{R}^{2}$. Let $f: X \rightarrow \mathbf{R}^{2}$ be a continuous function such that $f(x, 0)=(0,0)$ for all $x \in A$. Show that the image set $f X$ is connected.
Tips. We do not know the space X is connected, but we do that $[0,1]$ is. Many possibilities, Theorem 14.12 or pathwise connectivity.

5 (14:9). Show that the subset $A=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x+\cos y-e^{y} \sin z=1\right\}$ of \mathbf{R}^{3} is connected.
A tip. Theorem 14.16, a continuous function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ such that $\operatorname{Im} f=A$.
6 (14:8, adaption). Let G be a domain of a metric space (X, d). Suppose subsets $A, B \subset \partial G$ are closed, nonempty and disjoint. Show that there exists a point $x \in G$ such that $d(x, A)=d(x, B)$.
A tip. Consider the continuous function $f: X \rightarrow \mathbf{R}, f(x)=d(x, A)-d(x, B)$, Theorem 14.19. Actually, $A \not \subset B$ and $B \not \subset A$ are enough to separate here A from B sufficiently.

Remark. The second course exam 9.5. (13-15, auditorium of Exactum) includes the chapters 8-14 of Väisälä, indeed excluding product spaces and connected components.

