Topology I

Exercise 10, spring 2012

1 (13:3, about). Study briefly whether a set $A_k \subset \mathbf{R}^2$ is (a) compact, (b) complete, when

 $A_1 = \{(x,y) \mid x^2/3 + y^2 \le 4\}, \ A_2 = \{(x,y) \mid x^2y^2 = 1\}, \ A_3 = \{(x,y) \mid x^2 + y^2 < 4\}.$

2. Let $A \neq \emptyset$ be a closed and bounded subset of \mathbb{R}^2 . Show that there exists a point $(a, b) \in A$ such that $x^2 + 2 \sin y \ge a^2 + 2 \sin b$ for all $(x, y) \in A$. A tip. Use a continuous function.

3 (13:21). Let a function $f : \mathbf{R}^n \to \mathbf{R}$ be continuous, and suppose it is uniformly continuous on the set $\mathbf{R}^n \setminus B^n$ (B^n is the open unit ball). Show that f is uniformly continuous on the whole \mathbf{R}^n . Remark. The target space of function could be any metric space.

Tips. So a large ball $A = \overline{B}(\mathbf{0}, r)$ and so a little $\delta > 0$, that $x, y \in A$ or $x, y \in \mathbf{R}^n \setminus B^n$, whenever $|x - y| < \delta$. Draw a figure for yourself.

4 (13:4, adaptation). Let (X, d) be a compact space, and let $A_1 \supset A_2 \supset \cdots$ be a nested sequence of closed nonempty subsets of it.

(a) Show by a sequence, that the intersection $\cap_{n \in \mathbb{N}} A_n$ is nonempty and compact. Remark. If additionally $d(A_n) \to 0$, so it is a singleton (see problem 4, ex. 9). (b) Is it necessarily nonempty, if supposing compactness is dropped out?

A tip. (b) Consider $X = \mathbf{R}$ and choose appropriate nested closed intervals in it.

5. (a) Let r > 0, and let A be such a subset of a metric space (X, d), that there exists a sequence (x_n) of A such that $d(x_k, x_n) \ge r$ for all $k \ne n$. Show that A is not compact then.

(b) Equip the space $E = C([0, 1], \mathbf{R})$ of continuos functions $f : [0, 1] \to \mathbf{R}$ with the supnorm $||*||_{\infty}$, $||f||_{\infty} = \sup\{|f(x)| : x \in [0, 1]\}$ when $f \in E$. Show by using part (a) that the closed unit ball

$$\bar{B} = \bar{B}(\mathbf{0}, 1) = \{ f \in E : \|f\|_{\infty} \le 1 \}$$

of E is not compact, although it, as known, is a closed and bounded set in E. A tip. (b) A sequence of (simple) functions $f_n : [0,1] \to \mathbf{R}$, defined in pieces and alive in $\frac{1}{n+1}$, $\frac{1}{n}$, that is, never two alive simultaneously.

6 (13:18, deserves two points). Let B^n be the open unit ball of the space \mathbb{R}^n and $f: B^n \to B^n$ be a homeomorphism. Let (x_k) be a sequence of points in B^n such that $|x_k| \to 1$, when $k \to \infty$. Show that $|f(x_k)| \to 1$. Remark. An analogous result is valid also for the closed unit ball \overline{B}^n (the Brouwer's Domain Theorem). A tip. Indirect proof, compactness is needed.