Topology I

Exercise 1, spring 2012

1. Which of the following claims are true? A one word answer is completely enough. A, B, X, Y, \cdots sets, $f: X \rightarrow Y$ a function.
(a) $f^{-1} \cup_{i \in I} B_{i}=\cup_{i \in I} f^{-1} B_{i}$,
(b) $f \cap_{i \in I} A_{i}=\cap_{i \in I} f A_{i}$,
(c) $f^{-1} f A=A$, when f is injektive,
(d) $\cap_{x>0}[x, 2 x]=\emptyset$.
2. Let $x=(1,-2,1)$ and $y=(2,-2,-1)$ be vectors of the Euclidean space \mathbf{R}^{3} and $a=-3$. Calculate
(a) $a(x-y)$, (b) $|a||x-y|$, (c) $|a|(|x|-|y|)$, (d) $a(x \cdot y)$, (e) $|a||x||y|$, (f) $x \cdot|a| y$, where the usual dot product and usual Euclidean norms in \mathbf{R}^{3} and \mathbf{R} are used.
3. Let $D \neq \emptyset$ be a set. Show that the set $\operatorname{raj}(D, \mathbf{R})$ of all bounded functions $D \rightarrow \mathbf{R}$ is a subspace of the vector space $F(D, \mathbf{R})$ of all functions $D \rightarrow \mathbf{R}$.

4 (Väisälä 1:4). Let E be an inner product space and $\langle\cdot, \cdot\rangle$ its inner product. $A n$ ortocomplement of a subset $A \subset E$ is the set

$$
A^{\perp}=\{x \in E \mid\langle x, y\rangle=0 \text { for all } y \in A\} .
$$

Show that the set A^{\perp} is a subspace of the vector space E.
5 (Väisälä 1:6, a part). Let E be an inner product space and $x, y \in E$. Prove the equality

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2} .
$$

6. Let $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{R}^{3}$. Study which ones of the inner product postulates are satisfied by the real valued product

$$
\langle x, y\rangle=x_{1} y_{3}+x_{2} y_{2}+x_{3} y_{1}
$$

in \mathbf{R}^{3}. Is it an inner product there?

