Topology I Exercise 1, spring 2012

1. Which of the following claims are true? A one word answer is completely enough. A, B, X, Y, \cdots sets, $f: X \to Y$ a function.

(a)
$$f^{-1} \cup_{i \in I} B_i = \bigcup_{i \in I} f^{-1} B_i$$
, (b) $f \cap_{i \in I} A_i = \bigcap_{i \in I} f A_i$,
(c) $f^{-1} f A = A$, when f is injective, (d) $\bigcap_{x>0} [x, 2x] = \emptyset$

2. Let x = (1, -2, 1) and y = (2, -2, -1) be vectors of the Euclidean space \mathbb{R}^3 and a = -3. Calculate

(a) a(x-y), (b) |a||x-y|, (c) |a|(|x|-|y|), (d) $a(x \cdot y)$, (e) |a||x||y|, (f) $x \cdot |a|y$, where the usual dot product and usual Euclidean norms in \mathbf{R}^3 and \mathbf{R} are used.

3. Let $D \neq \emptyset$ be a set. Show that the set $raj(D, \mathbf{R})$ of all bounded functions $D \to \mathbf{R}$ is a subspace of the vector space $F(D, \mathbf{R})$ of all functions $D \to \mathbf{R}$.

4 (Väisälä 1:4). Let E be an inner product space and $\langle \cdot, \cdot \rangle$ its inner product. An orthocomplement of a subset $A \subset E$ is the set

$$A^{\perp} = \{ x \in E \mid \langle x, y \rangle = 0 \text{ for all } y \in A \}.$$

Show that the set A^{\perp} is a subspace of the vector space E.

5 (Väisälä 1:6, a part). Let E be an inner product space and $x, y \in E$. Prove the equality

$$|x + y|^{2} + |x - y|^{2} = 2|x|^{2} + 2|y|^{2}.$$

6. Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3) \in \mathbb{R}^3$. Study which ones of the inner product postulates are satisfied by the real valued product

$$\langle x, y \rangle = x_1 y_3 + x_2 y_2 + x_3 y_1$$

in \mathbb{R}^3 . Is it an inner product there?