Department of mathematics and statistic
Topology I
Compensating 1. course exam 12.3.2012
Remark. The candidate is allowed to use a brief abstract of size A4.

1. Show that the mapping $d: X \times X \rightarrow \mathbf{R}_{+}$, where

$$
d(x, y)=|\ln (x+1)-\ln (y+1)|
$$

is a metric in the set $X=\mathbf{R}_{+}=[0, \infty[$. The elementary properties of the function $x \rightarrow \ln x$ are supposed to be known.
2. Consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, where

$$
f(x, y)=(3 y-1,-2 x+1) .
$$

(a) Show that it is continuous.
(b) Is it even a Lipschitz (in the whole plane $\mathbf{R}^{2}$ )?
3. Consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$,

$$
f(x, y)= \begin{cases}-1, & \text { when } x<0 \\ x-1, & \text { when } 0 \leq x<1 \\ (x-1)^{2} y^{2}, & \text { when } x \geq 1\end{cases}
$$

Show that it is continuous.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function. Show that the graph

$$
G(f)=\left\{(x, y) \in \mathbf{R}^{2} \mid x \in \mathbf{R}, y=f(x)\right\}
$$

of it is a closed set in the (Euclidean) plane $\mathbf{R}^{2}$.

