Department of mathematics and statistics
Topology I
Compensating 2. course exam 15.5.2012
Remark. The candidate is allowed to have a short abstract of size A4.

1. Let $A=\left\{(x, y) \in \mathbf{R}^{2} \mid 0 \leq y<x^{2}\right\}$ and $B=\mathbf{R}^{2} \backslash A$ (draw a figure for yourself). Denote briefly $z=(x, y)$. Define a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by setting

$$
f(z)=f(x, y)= \begin{cases}1, & \text { when } z=(x, y) \in A \\ 0, & \text { when } z=(x, y) \in B\end{cases}
$$

(a) Give a sequence $\left(z_{n}\right)$ in \mathbf{R}^{2} such that $z_{n} \rightarrow \mathbf{0}$, but the corresponding sequence $\left(f\left(z_{n}\right)\right)$ of values of f does not converge in \mathbf{R}. Arguments not necessary. Here $\mathbf{0}=(0,0)$.
(b) Is the function f continuous at $\mathbf{0}$? Argue briefly.
2. Let $X=] 0,1]$ and $Y=[0, \infty[$ (with the Euclidean metric). Consider the function $f: X \rightarrow Y, f(x)=1 / x-1$ for $x \in X$ (suppose to be known that it maps a point $x \in X$ into Y). Show that f is a homeomorphism.
3. Suppose the sets $A_{k} \subset X$ are compact, $k \in \mathbf{N}$.
(a) Show that a finite union $\cup_{k=1}^{n} A_{k}$ of them is always compact.
(b) Give an example such that $X=\mathbf{R}$ and the union $\cup_{k=1}^{\infty} A_{k}$ is not compact, though the sets A_{k} are.
4. Show that the subset $A=\left\{(x, y, z) \in \mathbf{R}^{3} \mid z=x^{2}-y\right\}$ of \mathbf{R}^{3} is
(a) complete, (b) connected.

A tip (b). Represent A as an image set of an appropriate mapping.

