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References 75

These notes are quite inofficial and meant to give some support for the lectures.
They are not complete, for example, in the lectures more details of the proofs can
be given.

The lecture notes of Wolff [W] is the book closest to these lectures in content
and spirit. Stein’s book [S] covers also large part of this material. Some topics
are discussed in Sogge’s book [So] and those of Grafakos [G1] and [G2]. The
lecture notes of Mitsis [Mi] give a nice survey. For the basics of Fourier analysis
Duoandikoetxea [D] is excellent.

1. FOURIER TRANSFORMS

1.1. Fourier transform in L' and L?. The following basic facts about Fourier
transforms of functions can be found in most standard books in Fourier analy-
sis. Good references are [D] and [W].

The Fourier transform of a Lebesgue integrable function f € L'(R") is defined

by
(L1) F©) = f(©) = / f(@)e2mEwdy,

The following formulas follow easily by Fubini’s theorem:

(1.2) /fg = /fg, f,g € L', (product formula),
(1.3) (f/*\g) = fg,f,9 € L', (convolution formula).

Trivial changes of variables show how Fourier transform behaves under simple
transformations. For a« € R" and r > 0 define the translation 7, and dilation ¢, by

T.(z) =z + a, 6.(z) = ra.
Then for f € LY,

(1.4) Fora(€) = T f(€), F(e™7 £)(€) = J(€ — a),
(1.5) Foo. (&) =rf(re).

The orthogonal group O(n) of R” consists of linear maps g : R — R" which
preserve inner product: g(z) - g(y) = x - y. Then

— ~

(1.6) fog=fogforgeOn).
The proof of the following Riemann-Lebesgue lemma is also easy:

(1.7) f(€) — 0when [¢| = coand f € L.
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The following inversion formula is a bit trickier to prove:

(1.8) flo) = [ femenagit . f e L

We denote the inverse Fourier transform of g € L' by

F o)) = 5(0) = [ (@) s
Proof. Here is a quick proof, some details more are given in [D] and [W]. Define
[(z) =e ™ T (2) = eI,

Then I' = T. This follows from the definitions by complex integration or by

observing that when n = 1, I" and I" satisfy the same differential equation f'(z) =
—2mz f () with the initial condition f(0) = 1. We have then

[.(€) = e e TP/,
Denote
I(z) = / fleye e i ge.

Then by Lebesgue’s dominated convergence theorem,
I(z) — / f(&)e*™E2de ase — 0.

On the other hand, denoting g,(y) = e~ ¢2"¢v, we have g, (y) = [.(y — z) =
I'*(z —y), where ['*(y) = ¢ "I'(y/e). By the product formula,

L@ = [ fo= [ 15 =15 (@)

The functions I'*, ¢ > 0, provide a standard approximate identity for which I'*
[ — fase — 0. The combination of these two limits gives the inversion formula.
O

The Schwartz space S of rapidly decreasing functions is very convenient in
Fourier analysis. It consists of infinitely differentiable complex valued functions
f on R"™ which together with their partial derivatives of all orders tend to zero at
infinity more quickly than |z| =" for all integers k. Observe that C5° C S.

The first basic fact is that

(1.9) feSifandonlyif f € S.

This follows from the formulas for partial derivatives, which in turn follow easily
by partial integration: if f € S (or more generally under some obvious condi-
tions):

(1.10) g f(€) = (2mi€)* £(£),
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(1.11) 0°f(&) = F((—2mix)* f)(£).

Here o = (ay,...,ay),0; e N={0,1,... },2% =z - --- - 2% and 0* means «;
partial derivatives with respect to z;.
Secondly, we have

(1.12) /fg = /fﬁ,f,g € S, (Parseval),

(1.13) 12 = |If]l2: f,9 € S, (Plancherel),

Parseval’s formula (which of course gives Plancherel’s formula) is an easy con-
sequence of the inversion formula and the product formula:

/ fo= [ Feog@is = [ Fapg-oys = [ fahis

where h(z) = g(—z). We see immediately from the definition of Fourier transform
that h(z) = ( ), Wthh proves Parseval’s formula.

So the Fourier transform is a linear L?-isometry of S onto itself. The formula
(1.1) cannot be used to define Fourier transform for L?-functions; the integral
need not exist if f is not integrable. But S is dense in L?, so (1.9) and (1.15) give
immediately a unique linear extension of the Fourier transform to L?. Thus we
have f defined for all f € L* U L2. Parseval’s and Plancherel’s formulas extend
now immediately to L?:

(1.14) /fg = /fg, f,g € L?, (Parseval),

(1.15) fl2 = 11fl]2: f, g € L?, (Plancherel).

1.2. Fourier transforms of measures and distributions. We denote by M(R")
the set of finite Borel measures 1 on R™ (outer measures for which Borel sets
are measurable, but sometimes we may mean by Borel measure also a signed or
complex measure). The Fourier transform of ;1 € M(R") is defined by

(1.16) (€)= / e T,

When 1 has compact support, i is a bounded Lipschitz continuous function

(an easy exercise). It need not be in any L? for p < oo; for example 0,(§) = e 2mika,
The product formula has by Fubini’s theorem an easy extension to measures:

(1.17) /ﬂdu = /ﬁdu,p,y e M(R").
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As for functions, we can approximate measures with smooth compactly sup-
ported functions using convolution. Let (1/.) be a C* approximate identity such
that

V() = ™p(x/e), € >0, ¢ >0, /w = 1.
Then

e (€) = 1(e€) = ¥(0) = /1/1 —1lase — 0.
We define the the convolution f * i by

frp(z) = /f(x — y)duy,

when the integral exists. Setting for a finite Borel measure y, 1. = 1. * 1, we have
that p1. converges weakly to pas e — 0, that is,

/gpg — /gdu for all g € Cy(R"),
and
[ =t — [ uniformly.
We have for 1 € M(R") and f € S (and for much more general f),

(1.18) Fep=1fh,
(1.19) fi=f*n,
(1.20) Fu=fxp.

We leave the easy proofs as exercises.
A very general way to define Fourier transform is to do it for distributions:

Definition 1.1. A tempered distribution is a continuous (in a suitable sense, see
[D]) linear functional 7" : S — C. Its Fourier transform is the tempered distribu-
tion 7" defined by

T(p) =T(p) forp € S.

This definition agrees with the earlier ones when 7" corresponds to a function
in L' U L? or a finite Borel measure.

1.3. Fourier transform in LP. All LP-functions, 1 < p < oo, and more generally
all locally integrable functions f such that for some constants C' and m, |f(z)| <
Clz|™ when |z| > 1, can be considered as tempered distributions 7:

Ti(p) = /fso,so €S,

and so they have Fourier transform as a tempered distribution.
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For 1 < p < 2 we can also make use of L' and L*: any f € L”,1 < p < 2, can be

written as f = fi + fo, fi € L', f» € L2, and then f = f, + f». For p = 2 we have
the Plancherel identity and for p = 1 we have the trivial estimate:

1 lloe < 11£1]r-

From these the Riesz-Thorin interpolation theorem gives the following Hausdorff-
Young inequality:
p p
(1.21) 1fllq < ([l for f € LP,1 <P<24=7
No such inequality holds when p > 2.
Since we shall use Riesz-Thorin also later, we state it here. For a proof, see for
example [K] or [G1].

Theorem 1.2. Let (X, ;1) and (Y, v) be two measure spaces and 7" a linear operator
such that, for some 1 < pg, p1, qo, @1 < 0,

1T ()l Loy < Collfllzeo( forall f e L (u),
and

7)oy < Cullfllzer for all f € L (),
Then forall0 < 0 < 1,

IT(F)llzaw) < Co~ CTNf o for all f € LP(u),

where
1 1—-6 6 1 1-6 0
- = + —and - =
p Po Y4 q qo q1

2. FOURIER TRANSFORM OF RADIAL FUNCTIONS

This section is mainly based on [SW]. Watson’s book [Wa] contains a lot of
information on Bessel functions.
One of the goals of this section is to find the Fourier transform of the surface
measure on the sphere
={zeR":|z|=1}.
Let’s first compute the simpler example of the length measure A on the line seg-
ment [ = [—(1,0),(1,0)] in R%:

. ! _ ! in(2
/\(n,g):/ 6_2m("“’+50)dx:/ cos(27rnx)dxzm.

1 1 ™

We see that 5\(77, ¢) tends to 0 for a fixed £ when 7 tends to oo, but it remains
constant for a fixed n when ¢ tends to oo, and hence does not tend to 0 when
(n,€)] = .

We denote by 0"~ the surface measure on S" !, and sometimes also by ¢™ the
surface measure on m-dimensional spheres in R". Letting £" denote the Lebesgue
measure, we have that 0" ! is the weak limit of the measures
6L (B(0,1+6)\ B(0,1)) as § — 0. Here u| A is the restriction of the measure
p to the set A; u| A(B) = u(AnN B).
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To find the Fourier transform of 0" ! we first compute the Fourier transform
of a radial function. Suppose f € L'(R"), f(z) = ¢(|]z]), € R", for some
¥: [0,00) — C. We shall use the following two Fubini-type formulas which can
either be proven by standard calculus or deduced from a general coarea formula.

If f € L}(R"), then

(2.1) - fdc" = /S"—l (/000 flra)r™t dr) do™ .

Fix e € S"~! and denote Sy = {x € S" ! : ¢-x = cos#}. Then for g € L} (S™71),

(2.2) /S gdo" = /0 ' ( /S 9 g9(z) da”—%) do.

Applying (2.1) and Fubini’s theorem,

f(re) _ /f<y)€—2m‘re~yd£ny _ /OOO @D(S)Sn_l (/Snl e—27rirse~xd0_n—1x> ds.

The inside integral can be computed with the help of (2.2), since e 2™ js con-
stant in Sp:

/ efQﬂirse-zdo_nflx — / 6727rirs cos 00,n72(59> de.
sn—1 0
The set Sy is an (n — 2)-dimensional sphere of radius sin 4, so

0" 2(Sp) = b(n)(sin §)" 2,

where b(n) = 0" 2(S"72).
Changing variable cos  — —t and introducing the Bessel functions .J,,: [0, 00) —
C, where m > —1/2:

o (u/2)™ ! iut 2\m—1/2
(2.3) J(u) = NCESYOND /_le (1 —t2)m12q¢,

we obtain

1
/ 672m'rse-xd0_n71($) — b(n) / eQm'rst(l . t2)(n73)/2dt
Sn—1 —

1
= c(n)(rs)_("_z)/zJ(n,g)/g(27r7’5).

This leads to the formula for the Fourier transform of the radial function f:

4 Fla) = elal =27 [ () -aya(2rlals)s” ds.

A basic property of Bessel functions is the following decay estimate, which we
shall prove in the next section:

(2.5) Jn(t) < C(m)t™2 fort > 0.
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When m =k —1/2,k € {1,2,...}, repeated partial integrations show that the
Bessel function J,,, can be written in terms of elementary functions in the form
from which (2.5) easily follows. In particular,

2.6) Jua(t) = % sin .

All Bessel functions behave roughly like this at infinity, that is,

(2.7) I (t) = % cos(t —mm/2 — w/4) + Ot 3%, t = oo.

This can be verified with a fairly simple integration, see [SW], pp. 158-159.
Applying the formula (2.4) to the characteristic function of the annulus

B(0,1+90)\ B(0,1) and letting 6 — 0, we get

(2.8) oL (w) = c(n)|z]*"? Ty 2 (27| ]).
Consequently,
(2.9) o 1(z)] < C(n, m)|z|0/% for z € R™.

This is the best possible decay any measure on a smooth hypersurface, in fact, on
any set of Hausdorff dimension n — 1. The reason for getting such a good decay

for o7~! is curvature; for example segments are not curving at all but circles are
curving uniformly. Also for more general surfaces curvature properties play a
central role in the behaviour of Fourier transforms. We shall discuss this a little
more in the next section.

3. ESTIMATES ON OSCILLATORY INTEGRALS (STATIONARY PHASE)

Sogge [So] and Wolff [W] cover this material and Stein [S] goes much further.
In this section we study integrals of the type

(3.1) I(\) = / M@ (z)dz, A > 0,

and in particular their behaviour as A — oco. As a standing assumption the func-
tions ¢ and v defined on R™ will be smooth and v will have compact support, ¢
is real valued and ) complex valued. As special cases we obtain the estimates for
the Bessel functions and Fourier transform of the surface measure on the sphere
mentioned in the previous section.

3.1. One-dimensional case. We begin by studying the one-dimensional case.
Theorem 3.1. If ¢/(z) # 0 when = € spt ), then for every N € N,
I\ < Cya ™,
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The constant C'y may of course depend on ¢ and ¢ (here and later in this section).
In particular, we can take
¢ = / |— (z) ]da:
(L’
Proof. Integrating by parts,
1 d,, ot 4 V(@)
)| = o ide(x) drl = | — / iAp(z) dz| < Ci/ ).
=1 | sy @ = | - [0 L < oy

The cases N > 2 follow by similar calculations. O

If ¢'(x) = 0 but some higher order derivative does not vanish, the following
van der Corput’s lemma is useful:

Theorem 3.2. Suppose k € {1,2, ...} is such that |p®)(z)| > 1 for = € [a,b]. Then
with C), = 5- 2012,

b
(3.2) | / @ ) < CpATVE

ifi)k > 2or
ii) k = 1 and ¢’ is monotone.

Proof. Suppose first ii). Integrating by parts

eire(b iXp(a) b d 1
iAp(z d _ . idp(z) 2 d
'/ ol = 'zw) o~

<2A7h 4T / |dx e |dx\—2)\ + AT (B) 7 = ¢ (a)H < 3ATL

where in the last equality and 1nequality we used the facts that - ( W,lx)) and ¢'(z)
do not change sign on [a, b].

Suppose then that £ > 2. We use induction on k£ and assume that (3.2) holds for
k—1. We may assume that ¢*)(z) > 1 for z € [a, b], since p*) does not change sign
on [a, b]. Then p*~Y is strictly increasing and there is a unique ¢ € [a, b] such that
|*=V(2)| has its minimum at c. Either ¢**~Y(c) = 0 or ¢ = a or ¢ = b. Suppose
@*Y(c) = 0and let § > 0. Then |p*~V(x)| > 6 when z € [a,b] \ [c — 6, ¢+ 6] and
the induction hypothesis gives

c—0
| / M%) 4] < Oy 1 (M) "1 *D)

and

b
| [ M@ dg| < Cpy (M)~ E,

c+6
Since
c+o )
|/ e dr| < 26,
c—94
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we obtain

b
| / %) 4] < 2CH 1 (A)YED 4 96,

Choosing § = A\"Y/* we get

b
’/ €i)\(p(x)dl" < (20}671 + 2))\_1/k
If c = a or ¢ = b, a similar argument gives

b
| / M@ x| < Oy (N) TV ED g,

and we can again take § = A~/%.

As 20,1 +2 =521 — 4 < C}, the proof is complete. O

Corollary 3.3. Under the assumptions of Theorem 3.2, for any C'*°-function 1) :
R — Cand for a < b,

|/ M| < CA (D) |+/|¢ )lda).
Proof. Let
F(x):/ et
Then

[ v@ar = [ P = Foue - [ e

and by Theorem 3.2, |F(x)| < C A~Y* for all x € [a,b], from which the theorem
follows. O

We discuss now applications to Bessel functions and the surface measure ¢"*

on the sphere S"~'. We defined in (2.3)

(t/2)™ ks 9\m—1/2
T(m + 1/2)0(1/2) /16 (1= )""2ds,

for m > —1/2. For the formula for radial functions and ¢"~! we only need the
integral and half integral values of m. When m — 1/2 is a positive integer, we
already observed in (2.7) that the estimate (2.5) holds. When m € N, we have the
alternative formula:

I (t) =

1 2 o )
Jm(t) — 2_ / ezt 81n967zm6’d‘9'
™ Jo

This is easily checked for m = 0, and for m > 0 it follows by induction from the
following recursion relation, whose proof is a routine verification:
d

S T(0) = " T (),
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This alternative formula combined with Corollary 3.3 yields (2.5). We apply
Corollary 3.3 with A = ¢ and ¢(z) = sinz. Then ¢'(z) = 0 when z is 7/2 or
37/2 and ¢"(z) = £1 for these values of x. We can find functions 1, 1 and 13
such that ¢, + 12 + 13 = 1, ¥1 has support and equals 1 near /2, and v, has
support and equals 1 near 37/2. Then we can write .J,,,(¢) as a sum of three terms,
to two of them we apply Corollary 3.3 with £ = 2 and to one of them we apply
Theorem 3.1.

Thus we get decay estimate (2.8) for the spherical surface measure. This argu-
ment is heavily based on the radial symmetry of the sphere; it helped us to reduce
to one-dimensional integrals. For other surface measures we need analogous es-
timates for higher dimensional integrals, which we investigate now.

3.2. Higher dimensional case. For the rest of this section ¢ and ¢ will be smooth
functions in R" with 1 having a compact support, ¢ is real valued and 1) complex
valued. We denote again

I(\) = /ei’\@(x)w(x)dx, A>0.

Theorem 3.4. If Vip(x) # 0 when z € spt 1), then for every N € N,
(3.3) I(A) Sy A,

Proof. Suppose first that for some j, 9;p(x) # 0 for = € spti. Then by Fubini’s
theorem, writing & = (z1,...,%j-1,Zjt1,..., %), and C = {& : x € spt )},

I(\) = /C ( /R e @) (1) da ;) diE.

An application of Theorem 3.1 to the inner integral yields (3.3), obviously the
proof of Theorem 3.1 shows that the constants involved are independenof z.

In the general case we can cover spt 1 with finitely many balls B; such that
some 0y, (x) # 0 for x € By. Writing ¢ = ), ¢, with spt ¢, C By, the theorem
follows. O

Next we consider points where the gradient vanishes. We call such points crit-
ical. A point x is called a non-degenerate critical pont of  if Vo(zy) = 0 and the
Hessian determinant

hy(x0) 1= det(0;0rp(x0)) # 0.
The corresponding Hessian matrix is denoted by

He (o) := (0;0k(0)).
Theorem 3.5. If all critical points of ¢ in spt ¢ are non-degenerate, then
(34) [T S A2

Proof. We may assume that spt ¢ C B(0,1), [|[¢]|e < 1, [|[V¥] e < 1and ||Hy|le <
1. We consider first the case where ¢ is a special quadratic polynomial, ¢ = Q:

2 2 2 2
Qa) =ai+ - +af —afyy — - ap
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We use induction on n to prove that for any special quadratic polynomial @ in R"
as above and for any smooth ¢ with spty C B(0,1), [|[¢||cc < 1and [|[V¢|« <1,

|/ PREN Y (x)dx| < CL A,

where C;, depends only on n.
The case n = 1 follows from Corollary 3.3. Suppose the result holds for n — 1.
By Fubini’s theorem

I(\) = A2 / ei)‘(x%+"'+xi_xi+l"'_“’%)w)\(:vQ, co Xp)d(xe, L Ty,

where
Unlans ) =N [P RpGanm)d

Corollary 3.3 tells us that |¢\(z2,...,2,)| S 1and [Via(ze,...,2,)] S 1, the lat-
ter applying Corollary 3.3 to the first order partial derivatives of ¢ in place of
¥ and using our boundedness assumption on the first and second order partial
derivatives of ¢. The induction hypothesis gives that

|/6”(”“’5*“*“”%‘”@1“"‘xi)%(asz, oz (T, x)| S AET/Z

The theorem follows from these for such quadratic polynomials.
For the general case we use the following calculus lemma, called Morse’s lemma:

Lemma 3.6. Let ¢ : U — R be a C*> with U C R" open, z, € U, such that p(z,) =
V(xg) = 0 and hy(zg) # 0. Then there exists a diffeomorphism G : V' — W with
V,W Cc R" open, 0 € V, zyp € W, and for some k € {1,...,n},

poG(x Zx —Zx forx e V.

Proof. We may assume z, = 0. We may also assume that the matrix H,(0) is diag-
onal with all diagonal elements non-zero. This is achieved by first diagonalizing
H,(0) by an orthogonal transfomation O so that S = O~*- H,(0)-O is diagonal. By
direct computation using chain rule H,.0(0) = O - H,(0) - O. Since the transpose
O is O™, we have H,,0(0) = S, which justifies our assumption.

Under this assumption, d;¢(0) = 0 and 9?¢(0) # 0. By implicit function theo-
rem there is a smooth function g : W; — R, W; C R" ! open, 0 € W}, such that
g(0) =0and

01p(9(2),7) =0for & = (xg,...,2,) € Wi,

and 0y¢(x1,%) # 0 when (z1,2) € U,z € Wy and z; # ¢g(Z). Lety = po F, F(x) =
(z1 + g(Z), Z). Then by chain rule 9,¢(0, %) = 0 and 97¢(0, &) # 0 for z € W, and
by Taylor’s theorem, taking W, sufficiently small, we can write

Y(z) = (0,%) £ h(x)z], h(z) > 0.



TOPICS IN GEOMETRIC FOURIER ANALYSIS 13

Define E(z) = (—2—, 7). Then

V/h(z)
Yo E(x) =2 +(0,7)
and so
¢ FoB(x) = +a? + (0,7).
Repeating this for ¢(0, Z) in place ¥ (z) and so on, the lemma follows. O

We can now complete the proof of Theorem 3.5. Each point of spt ¢ has a neigh-
bourhood where either Vi) # 0 or we can perform the change of variable by a
diffeomorhism G provided by Morse’s lemma. Covering the whole spt ¢ with a
finite number of such neighbourhoods and using a partition unity, we can write
I(A\) = >_, I;(A). If j corresponds to a non-critical point, [[;(A)| < A~"/2 by Theo-
rem 3.4. For j corresponding to the non-degenerate critical points we have

L) = [ 900(G () g, ()

where Q; and G, are given by Morse’s lemma. For these |I;(\)| < A\™"/2 by the
special case considered above. O

3.3. Surface measures. We shall consider Fourier transforms of measures on smooth
hypersurfaces of R". If o is the surface measure on such a surface S, we shall
consider measures . of the type du = (do where ( is a smooth function with suf-
ficiently small compact support. Moreover, we shall assume that spt( N S is a
graph of a smooth function ¢ over its tangent plane at a point p € S. Without loss
of generality we assume that p = 0 and the tangent plane is R"~' = R*"! x {0}.
The reader can of course easily deduce various generalizations from this basic

case.
So let U ¢ R™ ! be bounded and open, 0 € U, p : U — Rand ¢ : R" — R be
smooth functions, ( with compact support, such that

S ={(z,¢(x) : x € U},
p(0) = V(0) =0,
spt ¢ C {(x,t) : z € U}.

Then the measure ;. = (o is given by

[ s = [ st ptaiyis
for g € Cy(R™) where
() = ((z, o(2) V1 + V().

Thus the Fourier transform of y is, writing £ = (€,60),

jle) = [ Dy )
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In order to obtain the optimal decay |¢|1~™)/2 as in the case of the sphere, we

need to make curvature assumptions. The Gaussian curvature of S at (z, ¢(x)) is
the Hessian determinant A, (z), which is the the product of the principal curva-
tures, that is, the eigenvalues of H,(x).

Theorem 3.7. With the above assumptions, if h,(z) # 0 for € U, then
()] < €477 for € € R™.
Proof. Let { = Anpwith A = |¢| > 0and |n| = 1, and
pn() = =2m(mar + .. Np1Tn 1 + (), z € U.

Then we need to show that
€)= | [ X u(a)da] 5, A0

The implicit constant may a priori depend on 7, since the integral is a continous
function of 1 and hence attains a maximum on S™ !,
We have
Ven(z) = =27 (-, 1) + 0 Vip(2))

and

H, (v) = —2mn,H,(z).
If n, = 0, Vy,(x) # 0 for all z € U, and the required estimate follows from
Theorem 3.4. If n,, # 0, the assumption h,(x) # 0 for z € U implies that h,, (x) # 0

for z € U, and the required estimate follows from Theorem 3.5.
O

4. RESTRICTION PROBLEMS

The presentation of this section is mainly based on [W]. This topic is also dis-
cussed in the books [G1], [So] and [S].

4.1. The problem. When does f|S"!' make sense? If f € L'(R") it obviously
does, since f is a continuous function and as such defined uniquely at every
point. If f € L*(R") it obviously doesn’t, since Fourier transform is an isome-
try of L*(R") onto itself and consequently f is only defined almost everywhere
and nothing more can be said. In this section we shall see that for f € LP(R")

the restriction f|S"! does make sense also for some 1 < p < 2. This follows
immediately if we have an inequality

(4.1) 1l zagsn-1) < Cpall f1ly

valid for all f € S. Then by denseness of S in L? f is defined as an L-function in
S"~1 satisfying (4.1). That is, the linear operator f — f has a unique continuous
extension to LP(R") — L4(S™'). The restriction problems asks for which p and ¢
(4.1) holds. It is open in in full generality, but we shall prove a sharp result when
q=2.
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By duality, (4.1) is equivalent with
(4.2) 100 @y < Coall Fllwsnsy

Here p’ and ¢’ are conjugate exponents of p and ¢ and f means the Fourier trans-
form of the measure fo"~!. In the case ¢ = 2 this equivalence is contained in the
following more general proposition:

Proposition 4.1. Let ;n € M(R") with compact support. The following are equiv-
alent forany 1 < ¢ <ooand 0 < C' < oc:

@) I pll oy < Cllfllz2q forall f € L2(p).

@) [z < Cllf [l oy forall f € S.

@) lliv* fllza@ny < C?|[fll Lo @y forall f € S.

The proof can be based on the following lemma, the proofs of the above state-
ments are left as exercises:

Lemma 4.2. Let p € M(R"™) with compact support. Then for all f,g € S,

[ faau= [ o

In order to solve the restriction problem it would be enough to prove the sharp
inequality (4.1) when p = 1 (or (4.2) when p’ = c0). The rest would follow by in-
terpolation between 2 and 1 (or 2 and oco) using Theorem 4.4 below. The following
is called restriction conjecture:

Conjecture 4.3. HfHLq(Rn) < Cpgll fllpoe(sn-1y for ¢ > 2n/(n — 1).

This would be sharp; it suffices to take f = 1 and verify that o"~! ¢ L*¥/(=1),
The latter follows from (2.8) and the asymptotic formula (2.7) for the Bessel func-
tions.

4.2. Tomas-Stein restriction theorem. We shall now prove the following restric-
tion theorem due to Tomas and Stein from the 1970’s:

Theorem 4.4. We have for f € L?(S"1),
1f llzo@ny < Coll fllz2gsnr)
for ¢ > (2n +2)/(n — 1). The lower bound (2n + 2)/(n — 1) is the best possible.

Proof. We shall prove the inequality only for ¢ > (2n + 2)/(n — 1). For the end
point, see [S]. By Proposition 4.1 the claim is equivalent to

(4.3) lom 1% flly < C2Nf Nl

We have

(4.4) o" 1(B(z,r)) < Cr" ' forz € R",r > 0,
and by (2.8),

(4.5) o 1(&)] < C(1 + €)% for € € R
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In fact, these are the only properties of 0"~ ! we are going to use. Thus the result
holds for the more general surfaces considered at the end of the previous section.

Let x € C*(R") be such that y(z) = 1, when |z| > 1, and x(z) = 0, when
|z| < 1/2,and set

o(r) = x(22) — x(z).

Then
spto C{z e R":1/4 <|z| < 1},
and
ng(?’jx) = 1 when |z| > 1.
=0
Write
ol =K+ ZKJ’

K@) = (1= ¢ 7a)o ().

Then K and K are C*°-functions with compact support, spt K C B(0, 1) (closed
ball), and spt K C {z : 272 < |z| < 27}. Young’s inequality for convolution (see
for example [G1]) states that
1 1 1
lg * hllg < NlgllpllAll- when 1 < p,g,r < 00,2+ 1 = 4

Applying thiswithg = K,h = f,p = ¢/2and r = ¢’ and using || K ||, < || K|l S 1,
we obtain

(4.6) K+ fllg < Clifllg-
For 7 =0,1,..., we have by (2.8),
1l < G277,
Thus
11 * flloo < C2770D2) 1.
Define v, 1; € S by
Y = @,4(x) = 2" (2x).
By (1.19), as on1 = F o™, I/(\] =1, *oc" . Hence for N =1,2,...,

K5(6)] = |27 / V(2 (€ —n))do™ | < Cn2 / (14271 —n)) Ndo™'n,
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since ¢ € S. Thus
K9] <

e[ (el ) Mo 1n+2 / (14 29[ — ) Ndo™ 1y <
B(£,277)

B(¢,2k+1-9)\ B(£,25)

(o (BE,2) + 3 20" (Bl 2 €

gnig=i(n=1) | i 2*Nk2(k*j)(n*1))> < 97

k=0
choosing N = n.

Since for f,g € S,
lg * flla = llg * fll2 = [19.fll2 < [[gllsollFl2,
we get
1K # fllz < 27[1 fl2-
Above we had
1 % flloo < €270 £y
Let 6 € (0,1) be defined by /2 + (1 — 0)/oc = 1/g, thatis, § = 2/q. Then by the
Riesz-Thorin interpolation theorem,
1K * fllg S 2j92—j((n—1)/2)(1—9)||f||q, — 2j((n+1)/q—(n—1)/2)||f||q,‘

Since ¢ > 242 (n+1)/q — (n—1)/2 <0, s0

D IE* fllg S 1l

k=0
By (4.6) we have also,
HK* Flla S 11 Fllar-

This and the representation ol = K + > = K give the required inequality
(43).

Now we discuss the sharpness of the theorem by some examples. Let e, =
(0,...,0,1) e R"and set for 0 < § < 1,

Cs={recS"':1-x-¢, <8}
Then Cj is a spherical cap of radius roughly . Choose,
= Xc;-
Then
(4.7) £l L2snr) = 0™ H(Cs) 2 e 607D/,
We estimate the Fourier transform of f in the "dual rectangular box” of Cj;
Rs={(eR":|§] <c/dforj=1,....,n—1,[&]| < c/6%}.
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Here c is a small constant depending only on n and to be fixed later. For £ € R”,

f(€) = G_Q”if"”dff”_ll“l

| e~ 2mis@en) gon=ly| > / cos(27€ - (x — e,))do™ .
Cs

We used only that |e‘27r§ r| = 1 and that the absolute value of a complex number
is at least its real part. Choosing ¢ < n/6 one checks easily that

27 - (x —e,)| < /3 forx € Cy, & € Ry,
whence
cos(2mé - (x —ey,)) > 1/2forx € Cs, & € Ry,
and so
()] > 0" (Cy) f2for £ € Ry,
Since L™(Rs) = 2"¢"6 "1, we get
1fllg = (0" (C5)/2)1L7 (Ry)) /1 = 67~ 1=t 1,

Recalling (4.7) we see that in order to have

1£llg S 1Nl zagsn-1y & 607172

we must have §"~1~("*1/a < §(=1/2 for small §, which means n — 1 — (n+1) /q >
(n—1)/2, thatis, g > (2n +2)/(n — 1) as claimed. O

The dual inequality for Theorem 4.4 is

2n + 2
1 l2sn-1y S 1l 1< p < 3

which of course is also sharp. We shall illustrate the sharpness in the plane by a
slightly different example. Then 2222 = 2. For 0 < § < 1, consider the annulus

:{§6R2:1—5§|€!§1+6}.

Our inequality can be shown to be equivalent with

48) FO)de < 5 / PR
As R2

If ¢ > 0 is small enough, the rectangle

={{eR”: |6 — 1] < b, || < Vo)
is contained in the annulus As;. Let g € S(R) with g(§) > 1 when || < ¢ and
define f by
f(x1,22) = 9(5$1)6_2ﬂmg(\/gx2)53/2,

which means that

F(61,6) = 3((& — 21)/0)§(&/V5).
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Thus f(£) > 1 when £ € R;. Then, if (4.8) holds,

2 2<6 P2/P
1< / K / )

Plugging in the formulas for f and f and changing variables, we derive from this

532 < 5( / g(61)[Pda / |g(V/62) [Pda,0°P/2)2/P
5(5 15 1/253})/2)2/19 54 3/p

which yields the desired p < 6/5.

[S] and [W] contain much more information on the restriction problem. In par-
ticular they present the powerful method based on stationary phase (in the spirit
of the previous section) and interpolation theorems. I shall not go into that, but
we shall return to the restriction topic and its connections to geometric Kakeya
problems in the next section.

4.3. Applications to PDE’s. One of the main motivations to restriction results is
their applications to partial differential equations. Here is a quick glance at that.
Consider the Schrodinger equation:

%u(z,t) = 1Au(z,t), u(z,0) = f(z), (z,t) € R" x R.

Its solution is given by

ule,t) = / eI F(6) de.

Let
S = {(z,2n|z]*) : * € R"}
and let o be the surface measure on S. Defining g by

f(&) = g(&, 2r|¢*)V/1 + (amle])?,
where (47|¢])? = |Vp(€) > with p(€) = 27|¢|?, we have

u(z,t) = go(w,t)
and the restriction theorems give for certain values of p,

1951l Lo @n ) S 19l 220)
But R
HQHLZ’(U) ~ Hf”L?(Rn) = ||f||L2(]R")>
SO
[l e @rxry S 11|22 @n).-
This method with variations applies to many other equations. For the wave
equation
2

0 0
ﬁu(z t) = Ayu(z,t), u(z,0) =0, au(a:,()) = f(z), (z,t) e R" xR
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there is a similar connection with the cone {(z,t) : |z| = ¢t} and one needs restric-
tion theorems for surfaces with 0 Gaussian curvature.

5. KAKEYA PROBLEMS

The main reference for this section is [W], but Stein also discusses this topic in

[S].

5.1. Besicovitch sets. We say that a compact set in R" is a Besicovitch set, or a
Kakeya set, if it has zero Lebesgue measure and it contains a line segment of unit
length in every direction. It is not clear that such sets exist but they do in every
R"™,n > 2. Besicovitch was the first to construct such a set in 1919. In doing this he
also solved a problem of Kakeya: in how small, in terms of area, plane domain can
a unit segment be turned around continuously. The answer is: in arbitrarily small.
Such constructions can be found in [F], [Gu], [S] and [W]. Fefferman was the first
to use these constructions to problems in Fourier transform in 1971, for the ball
multiplier problem. We shall return to this later. In this section we shall discuss
relations between Besicovitch sets and restriction problems. The pioneering work
for that is Bourgain’s paper [B].

How big must Besicovitch sets be? The conjecture, usually called Kakeya conjec-
ture, is

Conjecture 5.1. Every Besicovitch set in R” has Hausdorff dimension n.

This is true for n = 2, and we shall prove it, and it is open for n > 3. The
relation to restriction problems is:

Restriction conjecture 4.3 implies Kakeya conjecture.

We shall prove also this.

5.2. Kakeya maximal function. It is natural to approach these problems via a
related maximal function, which also will provide a link between the two con-
jectures. For a € R",e € S" ! and § > 0, define the tube T?(a) with center a,
direction e, length 1 and radius 9:

To(a) ={r €R":|(x —a) e <1/2,|z —a— ((x —a)-e)e| <J}.

Definition 5.2. The Kakeya maximal function with width 6 of f € L}, (R") is the
function

f5: gt 0, o0,

* o 1 n
fi(e) = su e /Tg@ F1dL".

We have the trivial proposition:

Proposition 5.3. For all f € L; (R"),

loc

1£5lloe < [1flloc and [ £5loo S 0" [1f1]1-
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If n > 2, as we shall now always assume, and if p < oo, there can be no inequal-
ity
175 | agsn-1y < Cllf[l for all f € LP(R™)
with C' independent of §. This follows from the existence of Besicovitch sets: let
B C R™ be such a compact set (with £"(B) = 0) and let

f=Xss,» Bs = {x € R" : dist(x, B) < 6}.

Then fi(e) = 1foralle € 5", 50 || f§||lza(sn-1) = L but || f|l, = L"(Bs)"/? — 0 as
0 — 0. Consequently we look for inequalities like:

(5.1) 1£illrso—1) < C-07%|| f]l, forall e > 0, f € LP(R™).

Even this cannot hold if p < n: let f = xp(0,5). Since B(0,d) C T7(0), we have for
alle € 5",
L"(B(0,9)) S
f5 (6) En(Tg(O)) ~

But
Ifllp = L(B(0,6))"/P ~ §™/7,

and § >> §"™/? for small ¢ if p < n. Kakeya maximal conjecture wishes for the next
best thing:

Conjecture 5.4. (5.1) holds if p = n, that is,
| f5llzn(sn-1y < C07 ¢ fl| foralle > 0, f € L"(R™).

We shall see that this holds in R? even with a logarithmic factor in place of
C:07%. In R™, n > 3, the question is open. We shall first prove a connection to the
dimension of Besicovitch sets.

Theorem 5.5. If (5.1) holds for some p, 1 < p < oo, then the Hausdorff dimension
of every Besicovitch set in R" is n. In particular, Conjecture 5.4 implies Kakeya
conjecture.

Proof. Let B C R™ be a Besicovitch set. Let 0 < o < n and let B; = B(z;,r;),j =
1,2,..., be balls such that r; < 1/100 and B C U;B,. It suffices to show that
re > 1.
A
For e € S !let I. C B be a unit segment parallel to e. For k = 1,2, ..., set
Je={j: 27" <r; <275},
and |
> o5 )
1002
Here H' is the one-dimensional Hausdorff measure (length measure). Since Y, iz <
1 and

Sp={e € S" " H' (I. N Ujey, B))

> M (I.NUjesBj) > H'(I) > 1,
k
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Usk =S

if there were some e € S" 1\ |J, Sk, we would have H' (I, N Ujecy, B;) <

all £, and then
1
ZH e NUjes, B )<2100k2<1’
k

we have

1
100k2 for

which is impossible.
Let

f = ka Wlth Fk = UjEJkB(xja 107”]').
If e € Sk, then, letting a. be the mid-point of I,

E"(TT (ae) N Fy) >

e

> o LT (),

whence
* ]' n—
1554l 2 50" (S0

The assumption (5.1) gives
1f5-ellp < C25If 1l < Co2™ (322072,
Combining these two inequalities,

O_nfl(Sk) 58 2k5pk2p27kn#{]k 55 27k(n72sp)#t]k’

D TR Y # RN 2N o (S) 2 1
k k

J

and finally

Choosing ¢ such that n — 2pe > a we get
Dozl
J

as required.

Remark 5.6. An obvious modification of the above proof gives that if
1 illnsn 1) < Cod ||}, for allf € LM (R™),
then the Hausdorff dimension of every Besicovitch set in R" is at least n — pg3.
We shall now prove a fairly sharp estimate in the plane:
Theorem 5.7. Forall 6 > 0 and f € L*(R?),

175 25y < C/10g(1/0) || fll 222,

with €' independent of § and f.
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Proof. We may assume that f is non-negative and has compact support. Changing
variable and using the symmetricity of 77 (0) we have

1

J5(e) = sup —omres fdc?

= 2 @) S

1
= sup — fla —x)dL%z = sup o5 * f(a),
acR2 25 T‘;(O) acR?2
where 1

95 = 25XT6

Let ¢ € S(R) be such thatspt ¢ C [—1,1], ¢ > 0and ¢(x) > 1 when |z| < 1 (check
that such a ¢ exists as an exercise if you havn’t met before). Define

0la) = (00) sp(aaf0), 2 = (1, 02) € B2

Then 1(&1,&2) = (&1)#(0¢2) and so

(5.2) spt e C [—1,1] x [=1/6,1/4].

Since ¢(x1) > 1 and ¢(x2/d) > 1 when |z;| < 1 and |z3] < J, we have g5' < 9,
with e; = (1,0), and so

(5.3) f5(e1) < sup Y * f(a).
a€R?
For e € S, let g. : R? — R? be the rotation, g.(z) = (e - x,et - z), where e - e+ = 0.
Then g.(z) € T? (0) if and only if z € T?(0). Hence defining ¢, = 1 o g., we get
from (5.3)
Fi(e) < sup e * £(a).

acR?
Using the fast decay of ¢ * f and Schwartz’s inequality, this leads to

£1(0) < e % fllow < 1% Flls = / il

[XG]

de)t/2,
I+l ®

/ T IFE) P+ [€)de) >

Since 1. (€) = ¥ 0 () = $(ge(€)), we get from (5.2)
spt e C Re = g ([=1,1] x [~1/6,1/)),

and so e
A1 / 1
—dt log(=).
1+ [¢] K= R61+|§| &~ s L+t g(5)
Thus

155 csn Stoe(3) [ [ F@UFOR+ lehdsaoe
~ log( / / Du(6)[doe) (€)1 + [€l)de
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Using again that spt 1, C R, we get for all ¢ € R?,

—_ 1
o'(fe€ St 0] 0} so(fee ST Ee R} S Tk
The last inequality is a simple geometric fact. Consequently,
—~ 1
(6)|dote <
[ larte s g

and

163 s S or(3) [ 1 FCOP( + e = os()I 1B

Remark 5.8. In R",n > 3, a modification of the above proof gives that if

175 z2esn1y S 8Z2|| I,
where the exponent (2 — n)/2 is the best possible.

The above proof is due to Bourgain from 1991. Originally this (and many other
Kakeya-type things) was proved by Cérdoba in 1977 by a geometric method with-
out using Fourier transform. See [W] for Cérdoba’s proof.

Combining Theorems 5.5 and 5.7 we obtain

Corollary 5.9. All Besicovitch sets in R? have Hausdorff dimension 2.

This corollary was first proved by Davies in 1971 using Marstrand’s projection
and line intersection theorems for Hausdorff dimension.

In the following lemma gives a discretized version of Kakeya type inequali-
ties. This lemma is also an essential ingredient in the above mentioned Cérdoba’s
proof of Theorem 5.7.

Lemma 5.10. Let1 < p < o0, p’ = I%,O <0 <land 0 < A < oco. Suppose that

m
I texrlly < A
k=1

whenever {ei, ..., e,} C S" ! is a maximal d-separated subset of S" !, t1,...,tp,
are positive numebrs with
n—1 /
oY <1,
k=1

ai,...,a, € R"and T}, = Tfk(ak). Then there is positive number C' depending
only on n such that

/5 1[zp(sn1y < CA[|f]lp for all f € LP(R").

By {e1,...,en} C S" ! being a maximal J-separated subset of 5"~ we mean of
course that |e; —e;| > 6 for j # k and for every e € S"~! there is some k for which
le — ex] < 0.
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Proof. Let {e1,...,en} C S™ ! be a maximal d-separated subset of S"~'. If e €
S™~1'N Ble, ), then fi(e) < Cf;(er) with C depending only on n, because any
T?(a) can be covered with boundedly many tubes T? (a;). Hence

LAY / frdon!
(ex,0
Schfg (ex)?0" " (B(ex, 6 Zfa )Pant,
k

By the duality of /? and I*', forany a; > 0,j = 1,...,m,

m

(Z a?)l/p = max{z ajbj 1 b; > O,Zbﬁ-’/ =1}
j=1 j=1

j=1

Applying this to a, = 0"=V/? f1(e;,) we get
||f(5 ||Lp Sn— 1) 5 (Z(é(n_l)/pf(;k(ek))p)l/p

= 26<" VP fs(ex)by = 51 Ztkfg ex))

where 37, 07 = 1, ), = 60-"/7b, and s0 6" 3, # = 1. Therefore

1
I3l 00 e [ 1lae”
sllLe(sn—1) ; LT (ar)) Jr3 (@)

for some a; € R". Since L"(T? (ay)) ~ 0"~!, we obtain by Holder’s inequality

1 oo <Ztk/ ( )\f\dm_/(Ztkmk(ak))\f\dﬁ”
e \k k
1D toxas, anllo 1 F1lp < ALl
k

OJ

5.3. Restriction implies Kakeya. Next we prove that the restriction inequality
(5.4) 1 £l aeny < Cyll fllzacsns) for g > 2n/(n — 1).

implies the Kakeya maximal conjecture 5.4. It can be shown, see [B], that Restric-
tion conjecture 4.3 is equivalent with (5.4) (that is, || f||a(s»-1) can be replaced by
| f|l on the right hand side), so by Theorem 5.5 Restriction conjecture implies
Kakeya conjecture.

For the proof we need a probabilistic result called Khintchin’s inequality. It has
also many other applications in analysis, for example, one can prove the sharp-
ness of the Hausdorff-Young inequality using it. Let w;,7 = 1,2,..., be indepen-
dent random variables on a probability space (£, P) taking Values il with equal
probability 1/2. One can take for example Q = {—1, 1} w;((z1)) = z;, and P the
natural measure on €, the infinite product of the measures 3(d_; + d;). Denote by
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E(f) the expectation (P-integral) of the random variable f. The indepence of the
w;’s implies that

E(wjwy) = E(w;)E(wy) = 0 for j # k,
and that for any Borel function g : R — R and any finite subset J of N, the random
variables g o w;, j € J, are independent and

E(ILjesg o w;) = e E(g o wy).

Theorem 5.11. For any a;,...,ay € Cand 0 < p < oo,

ija]]p ’ZM %) p/2

Proof. We shall only prove this 1 < p < oo, which is the only case we shall need.
If p = 2, the claim follows from independence as equality. Next we prove the
inequality "<". We may obviously assume that the a;’s are real. Let ¢t > 0. Then
by the independence

1
]E(etzj ajwj) — HjE(etajUJj) — HjE(§(€tajwj + e—tajwj)‘

The elementary inequality 3(e* + e*) < ¢”*/2 implies that

E(etzj 49) < /DT af
This gives for all ¢ > 0, A > 0, by Chebychev’s inequality
P(Y - aju; 2 N) = P(e %0 = M)
< e*)\tE<€t Zj CLdej) S 6—)\t+(t2/2) Z] a?

Take t = <*—. Then

and so

Applying this and the formula (which follows from Fubini’s theorem)

) a2
B(fP) =p [ 2e HTP(f] 2 N
0

we get by a change of variable

A2

B g l?) < 2 / Ve T ay = op) (3 a2,
j J

which is the desired inequality.
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To prove the opposite inequality we use duality. Let ¢ = 2. Then by the two
previous cases, p = 2 and "<", and by Holder’s inequality,

S laiP =E(Dajwil’) B awiP)PE(D  ajw;|t)
j j j j
SO e PR ajwy)

J J
which yields
E( ) ajw )P 2 (Y )
J J

and proves the theorem. O
Theorem 5.12. (5.4) implies Conjecture 5.4

Proof. Let {e,...,en} C S ! be a maximal §-separated set. Then m =~ 6'~". Let
e>0and 1 <p < nsuchthat with p’ = -5, 0 < 2(n — 1 —n/p’) <e. This can be
done since n/p’ —-n —1asp — n. Letay,...,a, € R"and ty,...,t, > 0 with

Y <1
k=1
Let T}, = T (ax). We shall show that
(5.5) 1D texnlly < Cu(n)s™.
p

By Lemma 5.10 this implies (with C' = C(n))
I f5 |p(sn-1y < C6 7| fl|, for all f € LP(R").
Interpolating this with the trivial inequlity

£ 1loo < [1.flloo

we shall get
I f5 |n(sn-1y < CO7¢|| f]|n forall f € LP(R™)

as required. So we need to prove (5.5).
Let 73 be the 6~2 dilation of T: 7 is the cylinder with center 6 —2ay, direction ey,
length 2 and cross-section radius 6 ~*. Let

Sy ={ee€ Sl l—e.e < 0_252}.

Then S}, is a spherical cap of radius ~ C~'6} and center ¢;. Here C is chosen big
enough to guarantee that the S;’s are disjoint. Define f; by

fk _ eZﬂiti_Qak-xXSk (.I')
Then || fx|lc = 1,spt fr C Sk and by the estimates we did with the example at the

end of the proof of Theorem 4.4 we see that, provided C is sufficiently large, but
still depending only on n,

fk(é) > 5n—1 fOI'f S
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Fix s, >0,k =1,...,m,and forw = (w1, ...,wy,) € {—1,1}" let

m
w) = Z Wk Sk fk-
k=1

We shall consider w;’s as independent random variables taking values 1 and —1
with equal probablility, and we shall use Khintchin’s inequality.
Let 1 < ¢ < oo. Since the functions f; have disjoint supports,

1 (@) (sny ZHSkkaLq(sn Y ~Zsk5" 1

By Fubini’s theorem and Khintchin’s inequality,

E(|F(@)]2) = / E(f(@)(©)]7)de
~ Zsk’fk /e 2010 [ (3 s (€

since |ﬁ| > 5" 1X’Tk
Let ¢ > =. Then by our assumption the restriction property (5.4) holds and
we get

17 @)lg S 1F @)l zagsny-

Combining these three inequalities, we obtain

) [ st 000 o

k=1 k=1

We had p and ¢, given in the beginning of the proof and we choose s, = /t; and
g=2p. Theng > 2~ asp <n,and 6D " s = 50D 7 < 1. Thus

52p’(n—1) /(Z tk‘XTk)p/ S 1
k=1

Changing variable y = §?z, 75, goes to T}, and so

g [ o) S1,
k=1
that is,
2 o (n—1)
| Ztkmllp < 8%

As2(5 —(n—1)) > —¢,(55) follows. O

Corollary 5.13. (5.4) implies Kakeya conjecture (that all Besicovitch sets in R"
have Hausdorff dimension n).
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6. STATIONARY PHASE AND RESTRICTION

This section is based on [S] and [W]. Sogge also has a lot on this topic in [So].
The presentation will be sketchy, we shall omit many details.

6.1. Stationary phase and L*-estimates. Recall that in Section 3 we investigated
the decay as A — oo of the integrals

I(\) = / e @) (z)dx, A > 0.

We found that they decay as A="/2 provided that the critical points of ¢ are non-
degenerate on the support of . In this section we allow ¢ and 1) to depend also
on x, we denote them now by ® and V¥, and we look for L” — L9 estimates for the
operators

6.1) Thf(€) = / ePP@OY (g, &) f(x)dr, X > 0.

As in the case of surface measures, this leads to restriction theorems via local
parametrizations of the surfaces, but this time it will be fairly complicated. We
shall also see how this method can be used to prove the sharp Carleson-Sjolin
restriction theorem in plane.

Under the non-degeneracy of the Hessian we have a fairly simple L*-result:

Theorem 6.1. Suppose that ® : R* — R and ¥ : R* — C are C*°-functions, ¥
with compact support. If

0*®(z, §)
then the operators 7}, satisfy
(6.3) IT5fll2 S A2 f|lz for all f € L*(R"), A > 0.

Proof. We can write

1T f |2 = / / K€, O () FQ)dedC.

where
K\ (£,Q)) = / eNPEO= @D (2, )V (x, ()da.
By Taylor’s formula

02 (z,¢)
8%8&

Assuming that the spt ¥ is sufficiently small we have then that for some ¢ > 0,

Va(®(2,6) — @(x,¢)) = ( )€ =) +0(lg = ¢I).
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when (z,€), (z,{) € spt¥. We can reduce to small support for ¥ as before (in
Section 3) with finite coverings. Reducing the support of ¥ further if needed we
can assume that for some j =1,...,n,

0

gz, (2(@:8) = @@ )] 2 g~

when (z,€), (z, () € spt ¥. Then similar partial integrations as in Section 3 yield
[KAE ) < On(L+AE=¢D™, N=1,2,...,
for £, ¢ € R™. Applying this with N = n + 1 we find that

/ KA(E,O))]dC < A for € € R,

[ 1KrE 0l £ 37 for ¢ e e
Defining
Ty f(C) = / K€, O f(6)de

we obtain form the previous inequalities and Schur’s test, which we discuss be-
low, that

1T = [ (@, )F < 1Tl S A
as required. O
Schur’s test is the following general and very useful boundedness criterion:

Theorem 6.2. Let (X, i) and (Y, v) be measure spacesand K : X xY — Capxv
measurable function such that

/IK(x,y))ldux <AforyeY

and
/\K(m,y))\dyy < Bforxz € X.
Define
Tef(e) = [ Ko f)dvy, | € )
Then
(6.4) Tk fll 2wy < VAB| f || 20) for f € L*(v).

Proof. This, and also the corresponding LP-inequality, follows from Riesz-Thorin
interpolation theorem, but here is an easy direct proof: We have the elementary
fact

1
Vab = min{§(€a+b/5) :0<e< oo}, a,b>0.

(6.4) follows if we can prove that

//|K(w’y>g(x)f(y)|du:cdyy < VAB
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whenever ||g||12(,) = 1 and || f|| .2,y = 1. To verify this we use Schwartz’s inequal-
ity and the above formula for v ab:

//IK z,y)9(@) f(y)|dpzdvy

<(/ / Kl Pdurdvy [ [ Gl dundn)
=ming //\K v, y)|1.f (y)Pdpedvy + — //!K:c )|g(x) Pdpzdry)

e>0
§m>161§(5A/\f| du+gB/|g| du) = VAB.
0

6.2. From stationary phase to restriction. Let us see now how stationary phase
can be applied to restriction problems. We are interested in inequalities

(6.5) 1fllzacs) S I1fllznen for f € LP(R™).

Here S is a smooth surface in R". Assuming that S is parametrized with a smooth
compactly supported function ¢ (6.5) reduces again to inequalities like

(6.6) | / fa () eV < ([,

where ¢ and v are compactly supported C* functions R"~! with ¢» > 0,¢(0) =
0,Vp(0) = 0 and h,(0) # 0. The Fourier transform of f is given by

flapla)) = [ o8 e € = (61,

Let 7 be a non-negative compactly supported C* function on R with n(0) = 1
and define

6.7) Thf(z) = / MO (2, £) f(€)dE, A > 0,2 e R™H

where .
P(z,§) = —2m(z - £+ o(2)&n),
U(z,&) = (x)n().

Suppose we could prove

(6.8) |75l Laqn1y S AN f Il o @y
Applying this to f, fr(§) = f(AE), we get

(1] =@ s 0e)agimu@ans S 30 sl = A £, = A
Change of variable ( = X gives, since A®(x, &) = ®(z, AE),

([ 1] = mcmsdciiayan's < 11,
When A — 0, 7(¢/A\) — 1, and the last inequality gives (6.6).
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The inequality (6.8) can be proven for much more general phase functions than
® above, and it has applications to many problems in addition to restriction. The
natural and best possible range of exponents in the general case for n > 3 is
2n+2  n-—1,
4=t
It corresponds to the range to which Tomas-Stein restriction leads by interpola-
tion. For n = 2 the range can be extended to 1 < p < 4. The main part of the proof
of (6.8) is for ¢ = 2,p = 2222, The rest follows by interpolation between this and
the trivial case ||T) floo < ||f|l1- We can write

1T f g sy = / / K€, O () T dedC,

1<p<

where
Ka(E:Q) = [ N0 (0, )Tz,
Rn—l

Let

(€)= [ Ka(€ al)dc
Then

T3 s = [ O]
So we need

HONF Nl o ey S A2 (1 1] o ey
This can be obtained by fairly complicated real and complex interpolation tech-
niques. A gain from going from 7, to U, is that we have now operator which acts
on functions in R" to functions in R" (not R"~! to R" as for 7)). The formal way
from T}, to U, is that the adjoint 7} of T} is

THH(C) = / MO, €) f (o) da,

SO
Uy = T;Th.

A serious problem with U, is still that the oscillating factor in its kernel K
depends on the variables in R"~! and R" and cannot have non-degeneracy corre-
sponding to the earlier conditions of non-vanishing Hessian determinant. Here
one needs to study the (n — 1) x n matrix

0*d(x,§)
What helps is that in many situations it has maximal rank » — 1, and this is one
of the assumptions for a general theorem. This can be used by freezing one co-
ordinate ¢; and using Fubini arguments or by adding to ¢ an auxiliary function
Py(z,t),t € R, which gives a non-zero Hessian determinant for ®(z, &, ..., &,—1)+

Po(x,&,). Then results like Theorem 6.1 can be applied. The many missing details
can found in [S] and [So]. subsectionSharp results in the plane In this section we
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shall prove a sharp L” — Li-inequality for the operators T} in the two-dimensional
case. This will solve the restriction conjecture in the plane. These results are due
to Carleson and Sjolin from 1972.

First let us observe a corollary to Theorem 6.1: under the assumption (6.2), the
operators 7T of (6.1) satisfy

(6.9) IT>flly S A7) fll, forall f € LP(R™),A > 0,1 <p < 2.

~Y

This follows readily interpolating (6.3) with the trivial case || 7 f||oc < [|f]]1-
We formulate and prove now in the plane a precise result for operators as in
(6.7). This kind of results were vaguely discussed before. The variable x will now

be a real number and ¢ € R% We shall denote derivates with respect to = by  and
0> ()
220¢;

with respect to {; with subscript ;. So, for example, ¢ (z,¢) =

Theorem 6.3. Suppose that ® : R x R*> - Rand ¥ : R x R? — C are smooth
functions such that ¥ has compact support and

®I£/1 (377 5) ®/£1 (x
(Dgg (‘/'177 5) ®ég (x

Then the operators 77,

(6.10)

’8‘ # 0 for (x,&) € spt 0.

T = [P )i, A > 0.6 € R,

R

satisfy
611) |5 fllzagrsy S A2 f oo forall £ € LP(R), A > 0, = 3p/,1 < p < 4.

Remark 6.4. Observe that we we have formulated the theorem for the adjoint op-
erators of the operators 7T},

Thf(x) = / e PC@EOY (2, ) f(€)dx, A > 0,z € R,
R2
that we considered before. The theorem is equivalent with
IT5f | oy S A 2P| e forall f € LYR?), A > 0,3¢ =p/,1 < p < 4/3.

Proof. 1 shall omit several technical details. They are only routine calculations,
except for the last step where we use an inequality for fractional integrals without
proving it. What will help is that we have now ¢ > 4 = 2 - 2. This allows us to
work with

T = / AEEIRTD (2, )W (y, ) f(x) f(y)dwdy, A >0,§ € R
R2
We would like to apply Theorem 6.1 with the phase function ®(x1,§) + ®(x2,§),

((z1,72),€) € R? x R?, but the determinant det(ax?zgk (P(21,&) + P(29,&)) vanishes
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for x; = x,. Computing this determinant, doing a little algebra and applying
Taylor’s theorem (all quite elementary) one finds that
(6.12)
o O, (21,€) P (21,€)

det P d = | &b Gy _ 2

€ (8%8&( (21,8) + ©(2,¢))) O (21,€) D (21,€) (2 = 21) + O(lz1 — 21[7)
Due to our assumption, we may as before suppose that ¥ has so small support
that

2

891: Jc‘?fk
Now we would like to make a change of variable in the z variable to get rid of
the factor |xo — x1|. This we obtain with y = (21 — 29,21 - 22) =: g(x1,z2). The
Jacobian (the absolute value of the determinant) is |z — 21| as we wanted. Notice
that g is only two to one in {z : 21 # z,} butitisone toonein {z : x; < x2} and in
{z : 23 < x1}. Moreover, g(z) = g(«') if and only if z = 2’ or 1 = 2}, and x5 = 2/,
as one checks by direct computation. Setting

D(y, &) = D(a1, &) + B(x9,€),

when y = g(z), we have the well defined function ®. It is smooth because of the
symmetricity of ®(x;) + @ (3, £) with respect to z; and z,. Moreover,

0* -

when |z, — 25| is small. Now we have (2 in front comes from the two to one

property)

[det( - (B(1,€) + (22, €))| > clea — 21| when (21, €), (22,€) € spt V.

det(

T =2 / PO (y € F(y)dy, A > 0,€ € R?,
RQ

where U(y, &) = U(x1, &)U (29,€) is smooth with compact support, and, when
x),

y=yg
Fly) = flwy) - flw)

|21 — 22

So we have won by getting a non-vanishing determinant for ®, but lost by getting
a singularity at the diagonal for F. Define r by 21" = ¢. Assuming, as we may,
that ¢ < co, we have then 1 < r < 2 and we can apply (6.9) getting

J1zsie= [ s 1rwra .
Changing from y to x we have

[1Fwrray =3 (1@l n -l dnde.

To estimate the last integral we use the following Hardy-Littlewood-Sobolev in-
equality for functions of one variable, see, for example, [S], (31) in Chapter 8:

[latagtelier ol “dnides < ( [ 1o
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if 1 —1=1—1++~. Weapply this with g = |f|",7 = — 1. Then
[z f gy

The choices of the parameters imply rs = p and 2'/(rs) = ¢/p, and the restriction
1 <r < 2isequivalent to 1 < p < 4. Thus the theorem follows. O

If ¢ is a local parametrization of a curve S and

®(z,8) = —2m(x - &1 + ¢(7)&a)

as before in the applications to restriction, then the determinant in the assump-
tions of Theorem 6.3

(bgl(z’g) @él(z’g) _ 2. n
o (2.6) @ (x,6)| = 4™ (@)

So the non-vanishing determinant condition means that the curve has non-zero
curvature. Recalling the argument ’(6.8) implies (6.5)" and checking that the con-
ditions on exponents match we obtain from Theorem 6.3 (recall the formulation
in Remark 6.4):

Theorem 6.5. Let S be a smooth compact curve in R? with non-vanishing curva-
ture. Then

(/ |f|qd01)l/q S| flle(re) for f € LP(R?),3¢g=p',1 <p<4/3.
S

This means in particular that the restriction conjecture 4.3 is valid for the circle
St

7. FOURIER MULTIPLIERS

For the beginners there is a nice treatment of the multipliers in [D]. Fefferman’s
ball example is done in [Gu], [G2] and [S]. [G2], [S] and [So] contain a lot of
further material on multipliers.

7.1. Definition and examples. Let m € L>(R") be a bounded function. For any
function f in L*(R") we can define the following operator T,, using the Fourier
Transform - R
T,.f = mf, thatis, T,,f = (mf)"
Using Parseval’s theorem we get,

1T flls = [ f, < Iimll [ F]], = Il 151

and therefore T;, is a bounded linear operator from L* to L* with norm bounded
by ||m||, . In fact, this norm is exactly ||m/||, (exercise).

The function m € L*(R") is said to be an LP-multiplier, 1 < p < oo, when the
operator can be extended to L” and this extension is bounded from L to L”.

For a measurable set A C R" we denote

Th=T,,.
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Let us look at some examples:

Example 7.1. Let m be the sign function in R; m(z) = —1 for z < 0 and m(x) =1
for x > 1. Then - )

Hf =—imf
where H is the Hilbert transform. So 7,, = H and m is an LP-multiplier for all
1 < p < oo by the well-known (but highly non-trivial) results on the Hilbert
transform.

Example 7.2. Let m = m,, be the characteristic function of the interval [a, b] and
Sap = Tn,, the corresponding multiplier operator. This reduces easily to the
previous example; in fact, see [D],

Sup = %(Ma oHoM_o— Myo HoM.),

where M, is the multiplication operator: M,f(z) = e*™* f(x). It follows that
X[a,p) 18 an LP-multiplier for all 1 < p < oo. Moreover, its norm is < C, with C),
depending only p. For a = —R, b = R, this gives
R
f(z) = lim ™ f(€)d¢ as R — oo in LP sense.

R—o0 _R
To prove this, check first that the formula is valid for functions in S and use the
denseness of S.

Example 7.3. As in the previous example, do we also have in R", n > 2,

f(z) = lim 2T f(£)dE as R — oo in LP sense?
R—o0 B(0,R)
For p = 2 we do have. For p # 2 we don’t have. This follows from the fact that
in R™ xp(0,1) is an LP-multiplier if and only if p = 2. The proof of this will be the
main content of this section.
Observe that the operator norms of T’z(g,1) and Tz, for any x € R",r > 0, are
equal, check this as an exercise.

Example 7.4. Let P C R" be a polyhedral domain. Then xp is an LP-multiplier
forall 1 < p < oo. By definition a polyhedral domain is an intersection of
finitely many half-spaces. Thus the claim reduces to showing that the charac-
teristic function of a half-space is an LP-multiplier. This in turn reduces to the
one-dimensional examples above. The details are left as an exercise.

7.2. Fefferman’s example. The following result is due to C. Fefferman from 1971,
[Fe]:

Theorem 7.5. The characteristic function of the the unit ball B(0,1) in R",n > 2,
is an LP-multiplier if and only if p = 2.

Proof. We shall first consider n = 2 and comment on the general case later. The
proof is based on Kakeya type constructions. We need a quantitative lemma,
Lemma 7.6 on a construction which leads to Besicovitch sets. This is based on the
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so-called Perron tree. We omit the proof, which can be found in [Gu], [G2] and
[S]. N

For a rectangle R we denote by R the rectangle obtained by adding translated
copies of R and attached along the two shorter sides of . For example,
R = [ZEl — ll,l’l + 2[1] X [IQ,ZEQ + lQ] if R= [ZL’I, T+ lﬂ X [JIQ,ZEQ + lg], ll < lg, but we
shall consider rectangles in arbitrary directions.

Lemma 7.6. Let ) < § < % Then there is a measurable set £ C R?and a finite

collection of pairwise disjoint rectangles { R;,} with the following properties:
(i) 3 < L2(E) <3,
(i) L2(ENRy) > 5L2(Ry),
(i) £2(E) < 0% L2(Ry).
First we establish the following general inequality in the spirit that LP-boundedness

for scalar valued operator implies LP-boundedness for vector valued operators
with same norm:

Lemma 7.7. Let T : LP(R") — LP(R"), 1 < p < oo, be any bounded linear op-
erator that is [|T'f[|, < C,|[/f]|, for all f € LP(R"). Then for every sequence of

functions { f;}}_, in L?(R") we have,

] e

Proof. Denote f = (fi,..., fy)and T'f = (T'f1,...,Tfi). Forw € S*~! we have by
the linearity of T,

p

7. w2 = [ w-np<ep [ wgr,
R7 R7 R7
For any y € R* we have,
(7.2) / w - yl" do* " w = |y’
gk—1

where c is independent of y and |y| denotes of course the Euclidean norm on R*.

This follows from the fact that the surface measure o*~! is rotation invariant, i.e.,
o(g(A)) = o(A) forall A C S*~tand g € O(k).
Using Fubini’s theorem, (7.2) and (7.1) we get

C/ |Tf|p:// |w'Tf|pd0'n1w§C£/ |w'f‘pd0n1w:C£C/ |f’p.
R» n Rn R™

This is the required inequality and the proof of the lemma is finished. O

The next lemma associates the multiplier operator of the unit disc to those of
the half-spaces:
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Lemma 7.8. Assume that the multiplier operator 7' = Tj of the characteristic
function of the unit ball B = B(0,1) C R" satisfies [|Tf|, < C, | ], for some

p > 2. Let {v;})_, be a finite sequence of unit vectors in R". Let H; be the half-
space,
Hi={x eR":v; -2 >0},

and T; = Ty,. Then for any sequence {f;}}_, in L’(R") we have,

k % k
(Z |ijj|2> <G (Z \fj|2>

P - P

2

Proof. We assume that f; € S, the general case follows by simple approximation.
Let B} be the ball of center rv; and radius r > 0. The characteristic functions xpr

~

convergence pointwise to xp, as r — oo. Let 17 = (x B f)V. Then also for f € S,
T7 f converges to T} f as r — oo both pointwise and in L?(R"). Thus it will suffice
to prove that for all » > 0,

k % k
(7.3) (Z {Tffj\2> <G, (Z |fj|2>
7j=1 j=1

p N p

1
2

Observe that, A ‘
zvjrf(l,) — 62mrvj~a:Tr(€—27r7,rvj~§f) (CL’),
where 7, is the multiplier operator of the disc B(0,7). Set g;(£) = ™2™ f;(€).
We obtain

(Z\Y}%l?) - (Z m<gj>|2>

p p
Recall from Example 7.3 that the operator norms of 7. and T are equal. Therefore
Lemma 7.7 yields
1 1 1

<Z ’T;fj‘2> = (Z |Tr(9j)|2> <Gy (Z ’9j|2> =Gy (Z |f]|2> )

p p p p

so that (7.3) holds and the proof of the lemma is finished. OJ

The next lemma tells us how the operators 7; of the previous lemma act on
some rectangles. The notation R was introduced before Lemma 7.6.

Lemma 7.9. Let R C R? be a rectangle whose longer sides are in the direction
v € S' and let H be the half-plane

H={reR*:v- x>0}
Then
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Proof. Suppose first that v = (1,0). Denote by 7" the multiplier for the half line
(0,00),

T f(x / F(&)eXatde for f € L(R).

If f € L*(R), Plancherel’s theorem gives

T+f _ hm/ f 2m(x+zs)§d€

e—0

in L?. Taking f = x(_1/2,1/2) we have for ¢ > 0,

- 27ri(x+i8)§d _ - ( OO —2miy€ 27Ti(x+i£)§d ) d
| R = [ ([ emeanieita ) p)ay

I 1
2mi 10 (y — x —ig)

by direct elementary estimates the absolute value of the last integral is bounded
below for |z| < 1/2 by some absolute constant. This is enough for us, but one can
also check that 1/10 is OK. It follows that

1 3
) + > < —.
(7.4) T f(z)| > o for |z| < 5
If f1, fo» € S we have for F(z1,2z2) = fi(x1)f2(x2) by Fubini’s theorem (recall that
= (1,0)),

TuF(x1,20) = /ﬁ@)e%mfdf:
H
= / / J/c\l(51)?2(52)€2m1€1e%m&dfldfz

- ([ o) [

= T"fi(z1)fa(x2).
Next let R be the rectangle with sides parallel to the axes that is given by a product

1
(—3.3) % (—a,a) with a < 5 Then,

Xr(z1,29) = X(_%é)(xl)x(,a’a)(@).
Hence by approximation and the above formula,
Traxr(21,72) = TJFX(%,%)(%) “X(-aa)(T2)
and by (7.9) we get that,

1
T
| HXR\ 10

The same inequality holds for any rectangle RJ with sides parallel to the coordi-
nate axis, either by repeating the proof or changing variables. For an arbitrary
rectangle we can rotate and translate to complete the proof. 0
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Let T' = T's be the multiplier operator of the unit disc B = B(0,1) C R?, i.e., for
f e L*(R?)
(Tf )A = xa/f.
If f,g € S we have by Parseval’s theorem,

[ria= [@rG= [wfi- [ Fei- [ @ - [ i7e
p

Suppose that 7" is an L multiplier with norm C,, for some p # 2, and p' = p—]
By duality and Holder’s inequality,
1T flly = sup

_1‘
/ ng'z sup / fT_g'
llgll,<1.g€S lgll,<1,9€S
< s |fls 1Tl < s [flle Collall, < Collfll -

lgll,<1,9€S lgll,<1.9€S

Hence 7 is also an LP-multiplier. Therefore without loss of generality we can
assume that p > 2.
Let £ and R; be as in Lemma 7.6, f; = xg,, let v; € S be the directions of the

longer sides of ; and let T} be the half-plane multiplier related to v; as in Lemma
7.8.
First notice that by Lemmas 7.3 and 7.6 we have with ¢, = 1/100,

imfjf =i |ijj|22ico &
/E =1 =1 7E =1 E

k k
=Y LYAENR;) >y L(R;)
j=1 j=1

By Hoélders inequality for the exponents £ and (%)" = -2; and Lemma 7.8,

/E (2; |ijj|2) < (/R? (22 |ijj|2) 3) p£2(E)pf

112 12
2

k i . . -
(Z'ijﬂQ) LYE)T <G, (Zlfﬁ) (B)5

J=1
P P

= C,LY(F (Zﬁ )

The last equality follows because the rectangles R; are disjoint. Combining the
previous estimates,

252 ) < ECLUE 252 )i < 20,07 Z.cz

7j=1
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which is a contradiction for sufficiently small 4.
This completes the proof for n = 2. For n > 2 one can proceed in the same way
and at the end use for the the functions f;,

i@y, .. x,) = XRJ-(%JQ)JC(%; ey Tp),

where f is a fixed function on R""2. One can also prove and use a Fubini-type
result stating that if m is an LP-multiplier on R"*", then for almost every { € R™,
n +— m(&,n) is an LP-multiplier with norm bounded by that of m. For this see
[G1], Theorem 2.5.16. O

7.3. Bochner-Riesz multipliers. I don’t give here proofs. For them and further
results and comments, see [D], [G2], [S] and [So].

We know now that we don’t have the convergence asked for in Example 7.3
if n > 2 and p # 2. But what about some modified type of convergence, for
example,

f(z) = lim (1-— 3]

)e*iTE f(£)de as R — oo in LP sense?

This is analogous to some classical facts for Fourier series: it is easier to get the
convergence for instance in Cesaro sense, leading to the Fejér kernel, than for the
usual Fourier partial sums, see, e.g., [D]. So we are requesting about results for
the multiplier (1 — |£]),, or equivalently for m(§) = (1 — |£]*),, instead of the ball
multiplier. Here a, = max{a, 0}. Raising m to small power § > 0 we get closer to
the characteristic function of the unit ball.

Definition 7.10. The Bochner-Riesz multiplier with parameter § > 0 is defined by

ms(€) = (1 - €)%

The corresponding multiplier operator is Ss;

Sof = (msf)”.
For f € S we have
S(;f = K5 * f

The kernel K; can be computed from the formula for the Fourier transform of a
radial function with the aid of some Bessel function identities. It is

Ks(w) = c(8)]a] ™7 T jays(2ma]),

see [D] or [S]. From the properties of the Bessel functions it follows that K is
bounded and its aymptotic behaviour at infinity is,

Ks(z) m Bx)|a| 7270712,
where £ is a bounded linear combination of trigonometric functions. Conse-
quently, K; € LP(R") if and only if p > 2% This implies that ms is not an

LP-multiplier if p < —2%. By duality, neither is it when p > —2"—. The Bochner-
Riesz conjecture believes that these are the only restrictions:

1
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Conjecture 7.11. my is an LP-multiplier if and only if
2n 2n
nri+2 P aTioas
Notice that the above condition is equivalent to
1 1 20 +1

| 2| 2n
Again, this conjecture is open for n > 3 and true for n = 2. In R? it is very close
to the restriction conjecture and was also proved by Carleson and Sjolin; Theo-
rem 6.3 which gave the restriction conjecture gives also this, see [S]. Tao proved
in 1999 in [Tao] that the Bochner-Riesz conjecture implies restriction conjecture,
there are also some partial results in the opposite direction, see Tao’s paper.
The following theorem is rather close to the best that is known:

Theorem 7.12. m; is an LP-multiplier if

2n < 2n
n+l1+2 PSS T1 o2

and
n—1

2(n+1)

The proof is easy if § > 1, because then K; € L'. Itis simpler than in the full
range for

o>

1 1 )

—_ = < —7

| 2 n—1

see [D] for that. For the full range one can use restriction Tomas-Stein restriction
theorem. Here is a skecth of the proof following a lecture of Ana Vargas:

We can write
o0

ms(€) = Y 2 M pr()),

k=0
where the functions ¢ are smooth, spt ., C (1 —217% 1 —2727%) for k > 1, and
o9 (1)) < C;2% fort € R,j = 0,1,2,.. .. Let Ty, be the multiplier operator

T f(€) = er(1€]) f(£).
Then

Ss = Z 2_k6Tk.
k=0
The kernel of T}, (the Fourier transform of ¢(|¢])) decays very fast for |z| > 2%,
which implies that for the boundedness of 7}, it suffices to consider functions f
supported on B(0, 2¥). For such an f,

91—k

1—2-2-k
ka($) = /1 /Sn_l e%m'gf(?“f)gok(T)da"‘lgr”—ldr_
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Hence by Minkowski’s integral inequality,

1—272-Fk

i ey / | ¥ f(r€)do™ €| pagrayr™ dr.

1—21-k Sn—1

Theorem 4.4 yields then with ¢ = 22+

n—17

1272k

1T fllpacery Hf(r')||L2(3n71)7’”_1d7“.
1

From this we obtain using Schwartz’s inequality, the fact that » ~ 1 and Plancherel’s
theorem,

12727k
ITiflleey S (L) agnenyr™ ) 22747 < a2

1-21—Fk

Since spt f C B(0,2F), we get

_ nﬁ n—1
IThfl paey S 2752255 || £l Laqrmy = 257070 || £l Loy

Recalling now that S5 = ;7 ,27"7T; and that § > ;%=L we see that S; is

2(n+1)”
bounded L? — L7 for ¢ = 2”5, The general case follows from this by inter-
polation.
Stein uses in [S] again stationary phase. The formulation is a little different;
n—1
0> v
2(n+1)

is replaced by

2(n+1)  2(n+1)
1<p<
=P=7y +3 1
but presumably these are essentially equivalent. The key lemma is

< p <,

Lemma 7.13. Let ¢ be a smooth function with compact support in R". Define

Gﬁ@»=/éwﬂwm—vam%xekmx>o

Then for 1 < p < 2D and A > 0,

n+3
1GAf o S AN -

A difference to the earlier case is that the phase function |z — y| is not smooth.
To overcome this one can consider

éum»—/QWy%m—yw@M%

where the support of 1; does not meet the origin. For this and other details, see

[SI.
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7.4. Summary of conjectures. I collect here the conjectures we have discussed
and some relations between them:

(1) Kakeya conjecture 5.1:
Every Besicovitch set in R” has Hausdorff dimension n.

(2) Kakeya maximal conjecture 5.4:

[ f5 [ n(sn-1y) < Ced™[| f|ln foralle > 0, f € L*(R").

(3) Restriction conjecture 4.3:

1 lzagzny < Coll Fllzoe(sn1) (O < Coll fllagsn—1y) for g > 2n/(n — 1).

(4) Bochner-Riesz conjecture 7.12:
ms is an LP-multiplier if and only if
2n 2n
nt1+2 P mo1-2
We proved that (2) implies (1) in Theorem 5.5 and (3) implies (2) in Theorem
5.12. As mentioned above (4) implies (3) by [Tao]. All these conjectures are true
in R?.

8. (n, k) BESICOVITCH SETS

What can we say if we replace in the definition of Besicovitch sets the line
segments with pieces of k-dimensional planes?

We denote by G(n.k) the space of k-dimensional linear subspaces of R". It is a
compact metric space with, for example, the metric

d(V,W) = [|Py — Pw],
where Py : R" — V is the orthogonal projection and || L|| is any norm for linear

maps L : R" — R". We denote 7, the unique orthogonally invariant Borel
probability measure on G(n, k). It can be defined by

Yni(A) = 0,({g € O(n) : g(Vo) € A, AC G(n,k)}),

where 6, is the Haar probability measure on the orthogonal group O(n) and V; €
G(n, k) is any fixed k-plane. For £ = 1 and k = n — 1 we can reduce this measure
to the surface measure on S"~!; denoting L, = {tv : t € R},

Yn1(A) = c(n)o" ' ({v e S" 1 L, € A}), AC G(n,1),
Yom-1(A) = c(n)o" ({v € S LF € A}), AC G(n,n—1).

Definition 8.1. A set B C R" is said to be an (n, k) Besicovitch set if L"(B) = 0
and for every V € G(n, k) there is a € R" such that H*(B N (V +a)) > 0.
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Here H* is the k-dimensional Haudorff measure whose restriction to a k-plane
is just the Lebesgue measure of that plane. We could as well ask that BN (V + a)
contains a unit & ball as in the case £ = 1. The existence questions would probably
be equivalent, though I am not sure.

The first question is: do they exist if £ > 1? The first result on this was proved
by Marstrand in 1979 in [M1]:

Theorem 8.2. There are no (3,2) Besicovitch sets. More precisely, if £ C R* and
L3(E) = 0, then for almost all V € G(3,2), H*(EN(V +a)) =0 forall a € R>.

Proof. Clearly we can assume that £ C B(0,1/2). Denote for v € S? and A C
B(0,1),

f(Av) =sup{H*(AN (L} +a)) : a € R?}.

We shall prove that

8.1) ( / T HAV)dns V) < £3(A),

where [ is the upper integral. The theorem clearly follows from this. Obviously
it suffices to prove (8.1) for open sets A. It is easy to check that if B; C R? is an in-
creasing sequence of Borel sets with B = U; B;, then f(B,V) < liminf, ., f(B;, V).
Therefore it is enough to prove (8.1) for disjoint finite unions of cubes of the same
side-length (when adding new smaller cubes split the earlier ones to match the
size). Thus let B = U ,(); C B(0,1) where the ();’s are disjoint cubes of side-
length 6.

For every v € S? the function a — H?*(B N (L} + a)) attains its supremum for
some a € R?; except the v’s orthogonal to coordinate planes it is a continuous
function of a and for these six exceptional vectors it takes only finitely many val-
ues. Choose for every v € S% some a € R? such that with A(v) = L} + a we have
F(B,v) = H*(BN A(v)). Clearly this choice can be made so that the function A is
a Borel function.
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We can now estimate using Schwartz’s inequality and Fubini’s theorem,

( / F(B,v)do™)? = ( / H2(B N A(v))do®v)?
- (Z/'HQ(Q] N A(v))do?v)? < mZ(/ H*(Q; N A(v))do?v)?

—m 3 [ HOH(Q % @) N (A() X A(w)d(o x o))

—m [ W XHAUL Q) x Q) N (A(1) x A(w)))d(0® x o%) (v, w)

S2x 52

<m H2 x H({(2,y) € Av) x A(w) : [z], |y] < 1, [z —y| < V38})d(0? x 0*) (v, w)

S2x 82

< m/szxsz/ . (2,v/35) N A(w))dH2xd(0> x o) (v, w)

< 376*m H2({z € B(0,1) N A(v) : dist(z, A(w)) < V36})d(6? x 02) (v, w)

We estimate the last integrand by elementary geometry. For this we may assume
v # tw and that the planes A(v) and A(w) go through the origin. Then A(v) #
A(w) and A(v) and A(w) intersect along a line L € G(3,1). Denote by 2a(v, w)
the angle between v and w. Then if z € A(v) N B(0,1) and dist(z, A(w)) < /34,

we must have |z| < ‘[5 ThlS implies that our set is contained in a rectangle

sin(a(v,w))
2v/38

n(a(v,w))

with sidelengths - and 2. This gives

H2({z € B(0,1) N A(v) : dist(x, A(w)) < V38}) <
and
( / F(B, v)dov)? < 376%m / %d(oﬁ % 02)(v, ).
For any fixed w € 57,

/sin(a(v,w))_lda% R~ / |lz|~tdt =~ 1.
B2(0,1)

Combining these we conclude
([ B0y < md* = £(5),

as required. O

The following result was proved by Falconer in [F1]:
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Theorem 8.3. There are no (n, k) Besicovitch sets for k& > n/2. More precisely, if
k> mn/2and E C R" with £"(F) = 0, then for almost all V' € G(n, k),

HYEN(V +a))=0foralla € R".

Proof. We shall use the following formula, say for non-negative Borel functions f:

n __ k k
(8.2) /Rn fac" = c(n, k) /G(n’k) /VJ— |z|" f(x)dH  xdy, i, V-

To prove this, integrate the right hand side in the spherical coordinates of V1:

P e

G(n,k) JVL

:/ / / r* f(rv)do* L or™ " drdy, 1, V
G(nk) Jo Jyilnsn—l

:/ r”_l/ / f(rv)de™ tvdy, , Vr.
0 G(n,k) Jvinsn—t

For non-negative Borel functions on 5",

/ / " Yody, 1,V = c(n, k)/ gdo™ !,
G(n,k) JVLnsn— 1 gn—1

because the left hand side defines an orthogonally invariant measure on S"~* and
such a measure is unique up to multiplication by a constant. Thus

/ / |lz|* f(2)dH xdry, 1,V = / Pl frv)do™ tvdr = | fdC"
G(n,k) JVL 0 Sn—1 Rn

Suppose now f € L*(R") N L*(R"). Let V € G(n, k). If £ € V*, then, writing
for a moment r = zy + 2., v € V, 2}, € V*, we have by Fubini’s theorem,

i dH dz, = Fy (€).
floy= [ e | gaar = Fote)

Thus by (8.2) and Schwartz’s inequality,

/ / By (€)|dH" €y 1V = / / )| dH iV
(n,k) J{ceVLi|g|>1} (n,k) J{€cV+t: |f\>1}

=c(n, k ke < e(n, k de)L/? —2k 7¢\1/2
b [ VRl < et F P /{&Rn:w €] de)
= ¢(n K1

where ¢ (n, k) < oo since 2k > n. As || f|leo < ||f|l1 and k < n, we have also

/ / B (©)|dH" eV =
G(n.k) J{€eV1:lg|<1}

k) [ AfEleE e S ISl
{geRm:[¢|<1}
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So we see that for almost all V' € G(n, k), Fy e L£'(V+). By Fubini’s theorem
also Fyy € L£Y(V*) for all V € G(n, k). Thus Fourier inversion formula implies

| Fv || oo ey < HF;HU(W) for almost all V' € G(n, k). Consequently,

8.3) / 1E vy dmsV < / / Fo ()M edmsV < |1+ [f o
G(n,k) G(n,k) JVL

Now we return to E. Take a sequence U; of open sets such that £ C U; and
L(U;) — 0. We apply (8.3) to the characteristic functions f; := xy, of U;. Let F} v
be the related functions on V*; F; y(a) = H*(U; N (V + a)). The key observation
now is that

sup{H*(U; N (V +a)) :a € V' = ||Fyy | vy
This is easy to see: if M is the supremum on the left hand side and ¢ < M, pick
a € V* such that H*(U; N (V + a)) > t. Then H*(K + a) > t for some compact
subset K of V suchthat K +a C U;N(V +a). Then K +b C U; N (V 4+ b) for bin
some neighborhood of a, and the observation follows. Combining this with (8.3)
we conclude that

/ sup{HF(EN (V +a)) :a € VI dy, iV

< lim inf/sup{?—[k(Ui N(V+4a):acVEidy,,V
1— 00

< liminf(L"(U;) + L™(U;)Y?) = 0.

1—00
This proves the theorem. O

The above proof shows that for almost all V' € G(n, k) the functions Fy agree
almost everywhere with continuous functions. It can be developed to give more
information about the differentiability properties of these functions for f € L?,
see [F1].

It is an open question whether there exist (n, k) Besicovitch sets for any & > 1.
With considerable effort the above simple results can be improved. This is due
to Bourgain from [B] and the best known information is that there exist no (n, k)
Besicovitch sets if 2¥7! + k > n.
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9. HAUSDORFF DIMENSION OF BESICOVITCH SETS

Since we cannot solve the Kakeya conjecture, we could at least try to find lower
bounds for the Hausdorff dimension of Besicovitch sets. The trivial one is 1. We
have also the lower bound 2. We proved it in the plane and essentially the same
proof gives it in higher dimensions. In fact, it follows immediately combining Re-
marks 5.6 and 5.8. One can also argue that the projection of a Besicovitch set on
any 2-plane is essentially a Besicovitch set (the line segments could have length
less that 1) and since projections don’t increase dimension, we get the above state-
ment.

9.1. Bourgain’s bushes and lower bound (n + 1)/2. Next we shall derive lower
bound ™. First we observe that the proof of Theorem 5.5 gives the following,
check this as an exercise:

Theorem 9.1. Suppose that for some 1 < p < ¢ < co and 3 > 0 there is a positive
number C' such that

9.1) "M (fe € SV (xm)ile) > AY) < COTTPL(E) )
for all Lebesgue measurable sets £ C R" and all positive numbers § and A. Then
the Hausdorff dimension of every Besicovitch set in R" is at least n — [3p.

Our next plan is to verify (9.1) forp = (n+1)/2,¢g =n+1land f =n — 1 to get
the lower bound (n+1)/2 for the Hausdorff dimension of Besicovitch sets. Before
doing this let us contemplate a little what (9.1) means. It is a restricted weak
type inequality (restricted since it only deals with characteristic functions) which
would follow immediately by Chebyshev’s inequality from the corresponding
strong type inequality (if we knew it):

175 [ zasnry) S 0721 £llp-
The converse is not true, but if we have restricted weak type inequalities for pairs
(p1,q1) and (p2, ¢2) we have the strong type inequality for the appropriate pairs

(p, q) between (p1,q1) and (p2, ¢2) by interpolation results of Stein and Weiss, see
[SW] or [G1]. Recall the Kakeya maximal conjecture 5.1:

/5 1pn(sn-1y < C67%| f||n for all e > 0.

Interpolating this with the trivial estimate || /5| (sn-1) < C:6'7"|| f||1 gives the
equivalent conjecture

/5 |agsn—1y < C.o~ /=1t £ foralle > 0,1 < p<n,qg=(n—1)p.
In the next theorem we shall prove the restricted weak type version of this
corresponding top = (n+1)/2,g=n+ 1.
Theorem 9.2. There is a positive number C(n) such that
(9.2) o" e e 8" (xp)i(e) > A}) < C(n)d AT L ()2

for all Lebesgue measurable sets £ C R" and all positive numbers § and A. In
particular, the Hausdorff dimension of every Besicovitch set in R" is at least (n +

1)/2.



50 PERTTI MATTILA
Proof. The inequality (9.2) means that the assumption (9.1) holds with p = ”T“, q=
n+land = Z—j& so that the statement about Besicovitch sets follows from The-
orem 9.1.

Let 57 '={ee€ S"t:e, >1/2} and

A={ee S (xp)ile) > A}

To prove (9.2) it is enough to estimate the measure of A. We can choose a max-
imal §-separated set {e;,...,exn} C A such that N > §'""¢""!(A) and tubes
T; = T?,(a;) for which

(9.3) LY(ENT;) > AL (T;) ~ A6 1.
To prove (9.2) it suffices then to show that
(9.4) LM(E) > VN I\

Let m be the smallest integer such that every point of £ belongs to at most m
tubes 7). This means that

(9.5) Z XBnT; <M
J
and there is x € E which belongs at least to m tubes 7. Integration of (9.5) over
E gives by (9.3) that
(9.6) LYE) 2> m ' LYNENT) 2 m N

J

To make use of = assume that it belongs to the first m tubes Tj; v € T} for j =
1,...,m. Let c be a positive constant depending only n such that

£ (Bla,eX) N T (a) < 5L7(T(a)

for every e € S"',a € R"; the existence of such a constant is an easy exercise.
Thenby (9.3)forj =1,...,m,

(9.7) LYENT;\ B(z,c\) > %cn(Tj) ~ AL

By simple elementary plane geometry there is an absolute constant b > ¢ such
that for any e, ¢’ € S71,a;,ay € R™,

bd
(9.8) diam (77 (a1) N TS (az)) < P
e—e
Lete), ..., e, beamaximal %-separated subset of ey, ..., e,,. Here % > §, when
we assume, as we of course may, that A\ < 1. The balls B(e}, 222), k = 1,...,m/,

cover the disjoint balls B(e;,/3),j = 1,...,m. Thus

- n— m n— m’ ! 200 / n—
" 0" U Bles, 6/3)) < 0" UL B(eh, ) S ml(5/A)",
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whence m’ 2 X" 'm. By (9.8) the sets EN T}, \ B(x,cA\),k = 1,...,m’, (T} corre-
sponds to e}) are disjoint. Therefore by (9.7),

(9-9) LYE) 2 A"t > AL,

Now both inequalities (9.6) and (9.9) hold. Consequently

L7(E) > max{\"6" tm, m INA1} > /(o Im) (m-IN A1) = VNI
and (9.4) follows. -

The above theorem is due to Drury from 1983; he proved LP-estimates for the
X-ray transform T'f(L) = [, f,L C R" a line, which are essentially the same
as the Kakeya estimates. The bound (n + 1)/2 is a bit annoying as it doesn’t
agree with the optimal bound 2 in the plane. The above method with 'bushes’,
bunches of tubes containing a common point, is due to Bourgain from [B]. In fact,
Bourgain proved sharper Kakeya estimates with better bounds for the Hausdorff
dimension of Besicovitch sets. This method also lead to the non-existence of (n, k)
Besicovitch sets for 251 + k& > n mentioned in the previous section, and to the
first partial results on the restriction conjecture better than the one following from
Tomas-Stein theorem.

9.2. Wolff’s hairbrushes and lower bound (n + 2)/2. Bourgain’s results were
improved by Wolff in [W1]. He got the lower bound (n + 2)/2 for the Hausdorff
dimension of Besicovitch sets, agreeing with 2 in the plane. We shall prove this
next. First we formulate another sufficient condition giving lower bound for the
dimension of Besicovitch sets. This condition means again boundedness of the
Kakeya maximal operator, I shall comment on this a little later.

Theorem 9.3. Let 1 < p < co. Suppose that and 0 < § < 1 for every J-separated
subset {ey,...,e,}of S" tand forall ay,...,a, € R",

(9.10) 1D xrs (ag)l| ey < ™/t

j=1
for all € > 0. Then the Hausdorff dimension of every Besicovitch set in R" is at
least p/(p — 1).

Proof. The proof proceeds along similar lines as that of Theorem 5.5. Let B C
R™ be a Besicovitch set. Then B is compact (though this is not essential as an
easy modification of the proof shows) and for every e € S"! there is a unit line
segment /. C B paralleltoe. Let0 < a < p/(p—1) =p' and let B; = B(z;,7;),j =
1,2,... , be balls such that ; < 1/100 and B C U,B; . It suffices to show that
erj‘z 1.Fork=1,2,...,set

Je={j: 27" <r; <27F}
and
Fk = UjEJkB(wja 10Tj).
By the compactness of B we may assume that there are only finitely balls B;.
Let n > 0 such that r; > 5 for all j, and choose a maximal 7-separated set
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{e1,...,en} € 5L Thenm ~ n'™" . Set T; = T!(a;) with a,; the center of
I.;. Then the balls 10B; cover each T} , that is,

Tj C UpFy.

From this we obtain
Z/ ZXTj > Zﬁn(T] N Uk;Fk) = Z,Cn(TJ) ~ mn”_l ~ 1.
k Fy j j j

It follows that for some k,

/ ZXTJ' Rk
B
Puté = 27% > p for this k. Partition S"! into disjoint Borel sets S;,j = 1,..., M
n'~" with 0"71(8;) ~ 7", and define T; = T (ac,), T(e) = Tj and T(e) = Tj,
when e € S;. Then by simple geometry,

‘R

n' LT N F) S 6L (TN Fy).

Therefore

E2S ) xrdl”

Fy, j
~ 1N n—1 n.,_ . 1-n n n—1
R Z/ / X1(e)(2)do"™ edL s =1 // Xr(e)(2)dL zdo™ e
j Fy, S]' Fy,

= /nl_”E"(T(e) N Fy)do" e < /51_”£”(T(e) N F)do™ e

F.

We shall now use the following simple lemma:

Lemma 9.4. If 0 < § < 1 and f is a non-negative Borel function f on S™~1  then
there is a §-separated set {uy,...,uw} C S" ! such that! ~ ¢'~™ and Zé’:l fluy) >
lfde'n_l/O'n_l(Sn_l).

Proof. Let {vy,...,v} C S"! be a d-separated set with [ &~ '~ and let 6,, be the
Haar measure on on the orthogonal group O(n) with 6,,(O(n)) = ¢"~*(S"!). For
every v € S"! the functional f — [ f(g(v))df,g defines an orthogonally invari-
ant Borel measure on S"~! which, by the uniqueness of such measures, agrees
with ¢"~1. Hence IZ;:l f(g(vj))dbng =1 [ fdo" ', and there is g € O(n) such
that 2321 flg(vy)) =1 [ fdo™ ' Jo™ 1 (S" ). So{g(v;) : j =1,...,1} is the desired
d-separated set. O
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Applying this with f(e) = [ £, X7(e)dL" we find a -separated set {u1, ..., w} C
S~ and the correspondmg tubes U; = T'(u;) such that [ ~ §'~" and

l
/ Z Xu,dL" 2 k.
F

Hence by Holder’s inequality and (9.10),

l
k,—Q S || ZXUJ_HLP(Rn),Cn(Fk)l/p’ S Cg5n/p—n+1—e<#Jk5n)1/p’ _ 065—71/13’4-1—8(#{]]6571)1/19/.

j=1
Recalling that § = 27%, and so k ~ log(1/4), and «a < p/, we get
CP' N 1 2 CV 40" 2 log(1/8) 267 (/P 1temmbe = Jog(1/6) 26 P H7e* > 1
J
as required, when we choose ¢ small enough. O

Theorem 9.5. Let 0 < § < 1. For every §-separated subset {e, ..., e, } of S*7!
and forall aq,...,a,, € R",

(9.11) | ZXng (@) po(ny < C6™/P7H=2

j=1
for all ¢ > 0 with p = (n + 2)/n. In particular, the Hausdorff dimension of every
Besicovitch set in R is at least (n + 2) /2.

Proof. The statement about Besicovitch sets follows immediately from Theorem
93. LetT; = Tfj(aj),j = 1,...,m, be as in the theorem. We may assume that
le; —ej| < 1 for all i and j in order to avoid that far away directions would
correspond to nearby tubes. We shall use ’bilinear approach’, that is, we write
the p’th power of (9.11) as

/(Zm;XTj)p:/ ZXT p/ _/(;XTiXTj>p/

Next we split this double sum into parts according to the distance (or angle) be-
tween the directions. Let N be the smallest integer such that 27V < § and set

Jo={(i,j): 27" <|e;—e| <2'FHk=1,...,N,

I():{l,...,m}.

Now we have

ZXTXT 72 Z XT; XT; +22XT

k=1 (Z ])GJk i€lp

Observe that p/2 < 1 1f n > 2, so we cannot use the triangle inequality. But the
elementary inequality (¢ + b)? < a? 4+ b%,a,b > 0,0 < ¢ < 1, will be enough.
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Applying this we obtain

/ZXTP<Z/ Z xr,xr,)"” +2/ZXT )P/,

(4,9)€Jk S

Since there are about log(1/§) values of k, the theorem will follow if we can prove
foreveryk=1,... N,

(912) ( Z XTiXTj)p/Q < Cgénf(nfl)pfs’

and if we have the same estimate for the sum corresponding to /,. We shall only

prove this for J, the case of I, follows by a slight modification of the argument.
So fix k € {1,...,N}. Cover S"! with balls B(v;,27%),l = 1,..., N, ~ 20"~k

Then for every pair (i, j) € Jy e;,¢; € By := B(v;, 2 %) for some [. It follows that

/ Z XT XT;) p/2 S Z/ XTiXTj>p/2~

(4,9)E Tk (4,9 EJk eie;€B;

As N, = 2("=Vk we are reduced to showing for every [,

(9.13) ( Z XT.XT; )p/z < 9~(n=Dky gn—(n—L)p—e

(4,5)€Jk,ei,ej €EB;
Our next step will be to reduce this to the case k£ = 1, that is, |e; — ¢;| = 1. So sup-
pose we know (9.13) for k = 1. Let £ > 1 and [/ as above; we may assume that v, =
(0,...,0,1). Consider the linear mapping L, L(z) = (27%'zy ..., 27 2, 1, 2,).
Then det L = 2= t)=D and x4, o L = x1-1(1;). By change of variable,

(> xmxg)P=270ED LY X))

(4,9)EJx,eire;EB; (1,3) €T ei,e5€EBy
The sets L™!(T;) are contained in 2¢t1§-tubes whose directions L™!(e;) satisfy

1/2 < |L'(e;) — L7 '(e;)| < 1 for the pairs (i, j) which appear in the above sum.
We can therefore apply our assumption that (9.13) holds for £ = 1 to get

/( Z XT-XT-)p/2 < 082—(71—1)1@’(2k5)n—(n—1)p—a < 052_(n_1)k5n_(n_1)p_6
2 J — —_ Y
(i,5) €k €i,e5E€B;
asn — (n — 1)p < 0 (recall that p = (n + 2)/2).
We have now reduced to proving that if {e;,..., ey} is a é-separated subset
of S"1, T; = Tfi(ai),z' = 1,...,M, for some a; € R" and Jy = {(4,j) : 1/2 <
le; — ex| < 1}, then

(9.14) JO xay < et
(

/L:])GJO
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Let’s make one more reduction: partition S"~! into subsets S;, = 1,..., N(n),
of diameter less than 1/4. Then for any pair (i, j) € J, there are [ and m such that
e; € Sy, e; € Sy, and dist(S;, S,,) > 1/4. To prove (9.14) it suffices to consider each
such pair (I, m) separately. That is, it suffices to prove that

019 [ = [(3 xannp oo
i€l jeJ i€l jed

where I, J C {1,..., M} such that |e; —e;| > 1/4wheni € I[,j € Jand M < 6™
For u,v € {1,..., M}, set

E,, ={z: M<ZXT <2,u,1/<ZXT ) < 2v}.

i€l jeJ

Then we have for the left hand side of (9.15)
/ (Q_xr)(Q_xn))"* = Z/ (Q_xn)(Q_ xn,)? < Z AP L (),
iel Jj€J il Jj€J

where the summation is over the dyadic integers p and v of the form 2! < M, €
N. There are only < log(1/6)? pairs of them. Thus we can find such a pair (u, )

for which
[ () )P S Cub (L ).
B

jel JjeJ

Taking also into account that p = (n + 2)/n, (9.15) is now reduced to
(9.16) () 2/ ) o E..) < CLo@-m/n—<

Keeping the pair (¢, ) which we found fixed, we define for dyadic rationals
and )\ of the form 27/, ] € N,

L={iel:(k/2)L"(T)) < LYT,NE,,) < kL"(T)},

J=1{j€J:(\2)LYT)) < LYTyNE,,) < \L™(T))}.
By the definition of E,, ,,
/ Z Z Xt X1; = L (Eyy).
Buv ier jes

We can write this as

z/zzxm ~ L (B,

i€l JEI N
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where the summation in x and ) is over dyadic rationals as above. We can restrict
to x and X at least 0", since, for example,

Z/E ZZXTiXTjSi Z #J/E ZXTi

K<E™ Y Fev el jETN =1 2-lgn<x<L21-15n mov €],
o
1-n 1-lcn pn 2—n)/n
ST Oy otler LTy S 6 < g,
I=1 i€l

Thus we have again only ~ log(1/J) values to consider and we find and fix x and
A for which

(9.17) puvL™(E,,) < C.67¢ / S xmxa
E

wviel jeJ

Then by the definition of £, ,,

v L(E,,) < C.6~%v / Y X =C5 vy LYE,,NT)
E

v il il
< C’E(Sfewaz LY(T;) < C.O vk < Co vk,
i€l
because #1,, < §'". Thus,
9.18) WLM(E) < C6—%r.

We deduce from (9.17),
WL (Eu) S C5° Y / S xn.
jedy? i iel,
Again, #J, < 0'7", whence we find and fix j € J, such that
" v L™(E,,) S 0565/ Z xr,xr, = Ce0™° Z LT, NTy).
Tj iel, icl,

Since above the directions of 7; and 7} are separated by 1/2, it follows that £"(7;N
T;) < 6", and we conclude

6" L (Byy) < Coo 8" ft{i € 1 s TN T, # 2},

Now we have found Wolff’s hairbrush: tubes T}, on the number of which we have
control, intersecting a fixed tube 7);. Next we shall make use of this in a somewhat
similar manner as we used Bourgain’s bushes in the proof of Theorem 9.2.

So now we have fixed pu, v, k, A and j € J,. Denote

I={iel,:T,NT; # 2}
so that
(9.19) 0 L (E,,,) < C.o#I.
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Then fori € I, L(T; N E,,) > (k/2)LT;). By simple geometry there is a positive
constant b depending only on n such that when we set

U={x eR":dist(z,T};) > br},
we have for i € I, L*(T; \ U) < (k/4)L"(T;); recall that the directions e; and e; of
T; and T; satisfy |e; — e;| > 1/2. Therefore

LY(T,NE,, NU)> (k/4)L"(T;).

Summing over i gives
JAD T
Eu,u .7
el

By Schwartz’s inequality,
ROTHT S xrewll2LM(E).
iel

We shall prove that
(9.20) 1Y xmawlla S (5770 1),

iel
Let us first see how we can complete the proof of the theorem from this.
Combining (9.20) with the previous inequality, we obtain
LY(E,,) 2 k" 6" #1
Bringing in (9.19) we get
/ﬁ"é"_Q,w/ < C.0C.

Recalling also (9.16) this gives

Mn—i—lyﬁn(E#’V)n < 62—11.

~Y

Interchanging 4 and v,
Myn+1£n<Eu,V)n S 62—71‘
Thus

(B S /G 08 (arT) = () 22,

which is the desired inequality (9.16).
We have still left to prove (9.20). The square of the left hand side of it is

[ e = X /TN Ten0) S s,
iel iiel
provided we can show for every i’ € I,
(9.21) > LMTLNTyNU) SR
iel
Obviously it suffices to sum over i # j. We split this into the sums over

Li={iel: 27" <|e;—ej| <2} T,NTyNU £ o}, k=1,...,N = log(1/0) :
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N

N LN NU)=> Y L(TNTNU) S #1257,

iel k=1 jef, k=1

since, as before, by simple geometry, L™(T; N Ty NU) < 2%6™ fori € I.. Once more
we use the fact that there are no more than about log(1/0) terms in this sum to
reduce (9.21) to

(9.22) #I.2k6m < g2

To see where this geometric fact follows from let us recall the situation. We have
tixed the two tubes T; and 7; which intersect at an angle ~ 1. For ¢ € I,
the tube T; intersects both of these and 7T} it intersects in U, that is, outside a
brk-neighborhood of 7j. This means that these three tubes lie close to a two-
dimensional plane, in fact roughly at a distance J/x from a plane. After this
observation we leave it as an exercise to deduce (9.22) and finish the proof of
the theorem. O

9.3. Bourgain’s arithmetic method and lower bound cn+1—c. Bourgain proved
in [B1] that the Hausdorff dimension of all Besicovitch sets in R" is at least %n%—%
This estimate is better than Wolff’s 22 only if n > 26, but in high dimensions
it is an improvement. Perhaps more interesting than the estimate itself is the
arithmetic method Bourgain introduced. He also used it to get LP-estimates for
the Kakeya maximal operator.

Bourgain’s proof is fairly complicated. Here I only present a special case of
the result, a similar estimate for Minkowski (or box counting) dimension. The
presentation is based Tao’s lecture notes from his UCLA web page.

Definition 9.6. The (lower) Minkowski dimension of a bounded set A C R" is

dimy A =inf{s > 0: lir5n iglf d°7"L"(Ns(A)) = 0},
—>

where N5(A) = {x : dist(z, A) < ¢} is the open d-neighborhood of A.

It is easy to easy show (or see [M], for example) that the Minkowski dimension
is always at least as big as the Hausdorff dimension. Hence the result below is
considerably weaker than Bourgain’s result.

Theorem 9.7. For any Besicovitch set B in R", dimy; B > cyn + 1 — ¢o with ¢y =

153

Note that ¢y > 1/2 so that this bound is also greater than (n + 2)/2 for large n.
It is clear that small modifications in the proof would give a bigger c,. We shall
prove the theorem for slightly modified Besicovitch sets, but it can readily be
reduced to these. Namely, we assume that B C [0, 1]" and for every v € [0, 1]"!
there is x € [0, 1]""! such that B contains the line segment

I(z,v) == {(z,0) + t(v,1) : 0 <t < 1}.
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We make the counterassumption that dimy; B < cn + 1 — ¢ for some ¢ < ¢y and
try to achieve a contradiction. By the definition of the Minkowski dimension

En(Ngg(B)) < 6(170)(n71)
for some arbitrarily small § > 0, which we now fix for a moment. For any A C R"
let

Aty =An R x {t})
be the horizontal slice of A at the level t. By Fubini’s theorem

/ | L7 (Nos(B) (1)) < s8]

0
so Chebyshev’s inequality gives,
LY{t €[0,1] : L (Nos(B)(t)) > 10061~y < 1/100.
Setting
A={te[0,1]: L (Nos(B)(t)) < 1005191}
we have £'(A4) > 99/100. From this it follows (as an easy exercise) that there are
s,s +d,s +2d € Awithd > 1/10. (In fact, any measurable subset of R with
positive measure contains an arithmetic progression of length 3 due to a theorem
of Roth, but this is not so easy anymore.) We can assume that s = 0 and d = 1/2
so that our numbers are now 0,1/2 and 1.
For ¢t € [0,1] set
Blt] = {i € 02" " : (i,t) € N5s(B)}.
Then the balls B((i,t),0/3),i € BJt], are disjoint and contained in Nys(B). Com-
bining this with the fact that 0,1/2, 1 € A we obtain by a simple measure compar-
ision
(9.23) 1B[0], £B[1/2], B[1] Sp 6.

Define for u,v € R"! the é-tubes T¥(u) = {y € R" : dist(y, I(u,v)) < d}

modified to our situation, and
G = {(z,y) € B[0] x B[1] : (x,0), (y,1) € T¢(u) C Ns(B) for some u,v € [0,1]"'}.
Then

He+yeG:(v,y) € GY S 0
and

tH{r —yeG:(v,y) €G} 2,58
To check the first of these inequalities observe that for (z,y) € G, ((x +y)/2,1/2)
belongs to the same tube as (z,0) and (z, 1), so it belongs to N;s(B). Since it also
belongs to 367" !, the cardinality of {z + y € G : (z,y) € G} is dominated by the
cardinality of B[1/2], and the first inequality follows. The second inequality is a
consequence of the Besicovitch property of B: there are roughly '~ d-tubes with
d-separated directions contained in Ns(B), each of these contains points (x,0) and

(y,1) for some (z,y) € G and for different tubes the differences = — y, essentially
directions of these tubes, are different.
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So the sum set of G is small and its difference set is large. We shall derive a
contradiction from this using the following proposition:

Proposition 9.8. Let ¢p = % There exists a positive number N, with the follow-
ing property. Suppose that A and B are finite subsets of A\Z™ for some m € N and
A>0,#A < Nand #B < N. Suppose G C A x B and

(9.24) tH{er+yeG:(x,y) € G} < N.
Then for N > N,
(9.25) tH{zr —yeG:(v,y) € G} < N*7=,

This is a purely combinatorial proposition and, as will be clear from the proof,
it holds for any free Abelian group in place of AZ™. Theorem 9.7 follows applying
the proposition to what we did before with N = §¢!=™ if § is sufficiently small.

Observe that the proposition trivial for ey = 0. The application of this gives
anyway dimy; B > (n + 1)/2, which is not completely trivial but much less than
we already know.

Now we begin the proof of Proposition 9.8 by assuming that it is false. Then
we have A, B C \Z™ and large N with

(9.26) A 4B < N,

and G C A x B satisfying (9.24) and

(9.27) #{r—yecG:(r,y) € G} >N,
which of course yield

(9.28) N5 < 4G < N2,

Here and later in this proof the implicit constant in S is absolute. Above we could
take it 1, we modify G below and want (9.28) still to hold. We can assume that

(9.29) (x,y) — x — y is one-to-one on G

simply by replacing G with a subset obtained by choosing one pair for every
difference and removing the rest from G. Denote

G"={ac A:(a,b) € G} forbe B.
We may assume that
(9.30) #G* > N'"> forb € B,

because removing those G° x {b}’s from G for which #G* < N'72%, say b € B,
reduces the cardinality of G only by >~ ., #G* < N?7*% and (9.28) remains valid
provided N is large enough.

The sum set being small means that many pairs have the same sum, and we
would like to have this property also for the differences. The key to this is the
trivial identity

at+b=ad +V <= a—-V=d -0,
which we shall employ in the proof of the following lemma.
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Lemma9.9. Let A, B C M2™,G C Ax Band N € Nsuch that #4A < N,#B < N,
(9.24) and (9.28) hold. Then there exists I C A x B of cardinality

(9.31) 4T > N2-5<0
such that for all (a,b) € I,
(9.32) #{(dV)eAXxB:a—b=d —V} > N3

Proof. Define the sum counting function son C' := {a +b: (a,b) € G} by
s(x) =#{(a,b) € G:a+ b=z}
Then by (9.28), Schwartz’s inequality and (9.24) we have

N9 S G =3 s(e) < (HO)A(Y s() < NVAY s(a) 2,

zeC zeC zeC

Z s(:c)2 > N37%0,

zeC

whence

This implies
#{(a,b,d' ) EAXBxAxB:a+b=ad +0} > N2,
or equivalently,
#{(a,b,a’,b') € AXxBxAxB:a—b =d —b} > N2,
Define the difference counting function d on {a — b : (a,b) € A x B} by
d(z) = #{(a,b) e AX B:a—b=x}.

Then the last inequality turns into

(9.33) > d(x)? z NP,

Since #(A x B) < N?, we have
Y d(x) < N7,

T

Z d(x>2 S N3_3EO,

d(x)§N173€0

SO

and further using also (9.33),
> d(z)? Z N
d(x)>N1—3%0
Combining this with the obvious fact that d(z) < N for every z, we get
#{x : d(x) > N30} > N1-20,

Letting I be the set of pairs (a, b) such that d(a — b) > N'~%%0, (9.32) follows from
the definition of 1. Also (9.31) follows since every difference x = a—b, (a,b) € 1,is
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realized by at least N'~3% pairs (a/, ') € A x B, which all are in I by the definition
of I, and there are at least N'~2%0 such differences. O

Next we shall make use of I and the identity
a—b=(a—=V)—(d =V)+(d —D).

If we could find about N? (up to suitable N~¢) pairs (a, b) having this representa-
tion for about N? pairs (¢/, V') in such a way that the pairs (a, '), (a’,0') and (d’, b)
would belong to I, we would be done. Namely, then we could count by the pre-
vious lemma about N7 (up to suitable N ~¢) different expressions (a; — by) — (ag —
bs) + (a3 — bs). But there are only at most N° six-tuples (a1, by, as, bs, as, bs) alto-
gether which would lead to a contradiction. Now we proceed to do this more
precisely.
Let us say that b € B and I/ € B communicate, written as b ~ ¥/, if

#{a € A: (a,b),(a,b) € I} > N2>,
Lemma 9.10. There exists B’ C B such that #B’ > N~ and
(9.34) #{(b,b) € B' x B : b AV} < N>,
Proof. We shall find B’ as one of the sections
I,:={be B:(a,b) €l}.
By the definition of the communicavity,

STHBV) €L x L bp VY=Y #{a€ A:(a,b),(al) € I}

acA bty
S Z N1—55€0 S N3—5560 )
bt/
On the other hand, we have by Schwartz’s inequality and (9.31),

Z(#Ia)Q > (#A)_l(z H#1,)? = (#A) L (F1)2 > N3-100,

a€A acA

Consequently,
> (#IL) = N0 #{(b,V) € I x I : b £V} 2 N¥10,
acA a€A

Since the cardinality of A is at most N, there must exist a € A such that
(#1,)? — NH0G{ (b, b)) € Lo x I, - b b} 2 N?710%,

Then #1, = N'75° and #{(b,0') € I, x I, : b £ b/} < N?*7* g0 that letting
B’ = I,, the lemma follows. O

We have by (9.30)
#(GN(AxB)) = #G" =z N>,

beB’
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Let us define now
G,=1{be B : (a,b) € G}
and
A ={a€A:#G, > N5},
Then arguing as for (9.30),
#A'> N0 and #(G N (A" x B')) > N* ™,

We apply now Lemma 9.9 to A’, B’, GN (A’ x B') and 7¢ in place of A, B, G and
go to find I’ C A’ x B’ of cardinality #1’ > N?735° guch that for all (a,b) € I’ the
difference a — b can be written roughly at least in N'~2!<0 different ways as a’ — V/
witha' € A,V € B'.

Now we do some counting. First

#{((l, b, b’) cAxB xB: (CL, b) c G, (a,b') c I/} 2 N3_43EO,

because there are (up to a constant multiplication) at least N?~35< choices of (a, V')
and then at least N'7%%° ways to choose b € G,. On the other hand,

#{(a,b,}) € A x B'x B': (a,b) € G, (a,V)) € I',b £ '} S N*H=,

because there are at most N?~**0 choices of (b,1') and then at most N ways to
choose a. Combining these we find that

#{((Z, b, b’) - A x B x B - (a,b) c G, (a,b’) c [/,b ~ b/} z N3,4350.
We can write this as

Y #{YeB (V) el b~} 2 N
(a,b)EGN(A’x B')

There are at most N? pairs in the sum, and each summand is at most N. So there
must exist at least N?~%*0 pairs (a,b) € G N (A’ x B') such that

#{b/ c B/ . (a,b/) c ]/7b ~ b/} Z N1744€0.
Therefore we have by the definition of the communicavity
#{(a', )€ A x B : (a,V) € I',(d,b),(d,V)) € [} = N?990

for these pairs (a,b). Writing a — b= (a — ') — (a’ = V') + (¢’ — b), it follows from
Lemma 9.9 that for at least N?>~*0 pairs (a, b),

#{(a17b17a27b2aa’37b3) ca— b - (al - bl) - (CLQ - b?) + (a?) - bS)} 2 N5_108€0'

For this we would need at least N7~1520 = NT7-152/153 . N6 different six-tuples
(a1, b1, as, b, as, bs), but there are no more than N of them and we have achieved
a contradiction, which proves proves Proposition 9.8, and so also Theorem 9.7.
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10. BILINEAR RESTRICTION

10.1. Bilinear vs. linear restriction. Earlier we studied the restriction inequali-
ties (in the dual form )

(10.1) 1 lagzny S NI fllzogsnry for f € LP(S™H).

Recall that by f we mean here the Fourier transform of the measure fo"~!. By
Holder’s inequality we can write this in an equivalent form

(10.2) 11 follarany S Lfillooisn) | fall cogsn) for fi, fo € LP(S™H).

As such there is not much gain but if f; and f; are supported in different parts of
the sphere, we can get something better. Let us look briefly at the case p = 2, ¢ = 4.
Suppose that the distance between the supports of f; and f; is greater than some
absolute constant ¢y > 0. By Plancherel’s theorem the inequality

I f1fellze@ny S N fillz2sn—)ll follL2(sn-1y
reduces to the non-Fourier statement

1(fro" 1Y) % (f20" Dl r2ey S il || foll L2gsm—y,

which is not very difficult to prove, although not trivial either. On the other hand,
the corresponding linear inequality

[ fllzony S N Fle2esmny
is the Tomas-Stein theorem and it holds if and only if ¢ > (2n + 2)/(n — 1), recall
Theorem 4.4.

The bilinear restriction problem on the sphere asks for what exponents p and ¢
the inequality (10.2) holds for f; € LP(S"1),j = 1,2, or for f; € S, if spt f; C S
and S; C S™! with dist(S;,9;) = 1. More generally, S; and S, can be some
other type of surfaces (pieces of paraboloids, cones, etc.). The essential condi-
tion required is usually that they are transversal, that is, their normals point to
separated directions.

The point in bilinear estimates is not only, nor mainly, in getting new types
of inequalities, but it is in their applications. In particular, they can be used to
improve the linear estimates, and that is what we are going to discuss here. One
way (and equivalent to others we have met) to state the restriction conjecture is

Conjecture 10.1.

A e n—1
[ fllza@ny S N flloesnry for f € LP(S"H),p" < L 2n/(n —1).

By the Tomas-Stein theorem this is valid for p = 2,¢ = (2n + 2)/(n — 1), and
whence by interpolation for ¢ > (2n+2)/(n—1). The Kakeya methods developed
by Bourgain and Wolff give some improvements for this, but still better results
can be obtained via bilinear restriction. This is based on two facts: a general result
of Tao, Vargas and Vega from [TVV] of the type ’bilinear restriction estimates
imply linear ones” and a bilinear restriction theorem of Tao from [Taol]. The
latter is the following;:
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Theorem 10.2. Let S; C S™ 1,5 = 1,2, with dist(S;,5:) 2 1 and f; € S with
Spt fj C Sj. Then

11 fallzany S 1 Aillzzesol fellzzsy) for @ > (n+2)/n.

The lower bound (n + 2)/2 is the best possible by rather easy examples. In fact,
Tao proved his results for paraboloids, but as he says in the paper, the method
works for more general surfaces including spheres. The class of surfaces was
turther extended by Lee in [Lee]. The proof is long and complicated, we shall
discuss some parts of it a little later. First we look at the result of Tao, Vargas and
Vega:

Theorem 10.3. Let 1 < p,q¢ < 00,q¢ > 2n/(n—1) and p’ < Z—ﬁq. If the estimate

(10.3) Hf1f2HLq/2(Rn) N Hfl HLP(Sl) ”f2HLP(Sz)v
holds for transversal surfaces S; and S,, then also the estimate

HfHLq(R") S HfHLp(Sn—l)
holds.

Concerning the class of surfaces involved, the formulation here is rather un-
precise, see [TVV] for the precise one. In the proof one needs the bilinear esti-
mates for a class of surfaces which are obtained from spherical caps via affine
transformations. The result in [TVV] also includes the case p’ = Z—jr}q.

Combining the last two theorems (and remembering the above remark on [TVV]),
we obtain

Theorem 10.4. The restriction conjecture holds for ¢ > 2(n + 2)/n:

A — n—1
[ £z S 1 lligsn-y for f € LY(S™7).p" < .4 > 2(n + 2)/n.

We now sketch the proof of Theorem 10.3. We only consider the case where
g < 4. This is actually enough by the Tomas-Stein theorem and the fact that the
restriction conjecture is valid in the plane.

Suppose f has support in a part of S~ ! which has a parametrization (v, p(v)),v €
Q, where Q is a cube in R"! and ¢ > 0. Then we can write the Fourier transform
of f (forgetting the Jacobian term)

fx,t) = / e~ et e) £y o(v))dv, (2,t) € R"™ x R.
Q

Next we write A X
112y = ICF)2 N parzqnys
and

(]E)Q(SE, t) _ / / e—27ri(ac~v-|—t<,o(fu))f(v7 SO(U))6—27ri(:n-w-&-tgo(w))f(w7 gp(w))dvdw.
QJQ

We introduce a Whitney decomposition of Q@ x Q \ AJA = {(v,w) : v = w},
into disjoint cubes I x J € Q;,k = 1,2,..., where I and J are dyadic subcubes
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of Q such that diam(I) ~ diam(J) =~ dist(/,J) ~ 27%* when I x J € Q. Let
fr(v, o)) = f(v,¢())xr(v). Then we have

(10.4) HfH%CI(R") = | Z Z frfillparz@ny < Z I Z frfillparz@ny-
!

k IxJeQy IxJeQy

The inverse transform of f]fj is the convolution f; * f;. We have for its support
spt frx f; C S, J) :={(v,t):vel+J0<t <2}

Here I + J lies in a C27*-neighbourhood of I + I for some absolute constant C, so
the sets S(1,J),I x J € Qk, have bounded overlap for each fixed k. Choose
smooth compactly supported functions ¢(/,J) < 1 such that ¢/(I,J) = 1 on
S ), | F (@, ) ~ 1, and

(105) Z Xsptp(I,J) S ]-7

IXJeQy

and define the operators 77 ; by
Try9 = FW(,J)g).

Using (10.5) Plancherel’s theorem gives the L?-estimate for arbitrary L-functions

a1,/
Z TI,JgI,JH%Q(R")S Z HgI,JH%%Rny

IxJeQy, IxJeQy
The L!'-estimate
Z Tro9r7llo@ny S Z g1/t @ny
IxXJeEQy IxXJeQy

for arbitrary L'-functions g; ; follows by |77 5975/l < |l97.7]]1 and triangle in-
equality. These two inequalities tell us that the operator T}, T}.(91,7) = > /. je o, I1.791.7,
is bounded from L"(R", ") to L"(R") for r = 1 and r = 2. By the Riesz-Thorin the-
orem interpolation theorem for such operators, see, e.g., [G1], T}, is also bounded
from L9/2(R",19/%) to L¥/?(R"), since 1 < ¢/2 < 2 (all of course with norms inde-
pendent of k). Thus

2 2
Z TI,JgI,JH%/q/?(Rn) 5 Z ”gI,JHi/q/Q(Rn)'
IxJeQy IxXJeQy

Observe now that

o~ o~

TI,J(]/C\I]/C}) = f1fs
whence
(10.6) 1Y ol S D IFfoll e g,
IxJeQ, IxXJEQ

In order to apply our bilinear assumption we have to scale f; and f; back to the
unit scale. Let I x J € Q. After a translation and rotation we may assume
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that U J C B(0,027%) c R"'. Then the appropriate scaling is (v, p(v))
(2%, 2% (v)) := (w, ¥ (w)). Define, with this notation,

g1(w, p(w)) = fr(v, o(v)), g (w, Y(w)) = f1(v,0(v)).

The change of variable formulas give (¢; and ¢ are now of course with respect to
the graph of ©)

Fr(z,t) = 27 KD g2y 272Ky F oz, 1) = 27KV gy (2 kg 22Ky,
7 g

/ F |2 = o-Matn=D=(41) / G|,

/|gl\p :2k(n1)/’f1\p,/|gl\p :2k(nl)/’f1\p-

The vaguely stated assumption of the theorem includes that (10.3) holds for a
class of surfaces containing the graph of 1) (and Tao’s Theorem 10.2 also includes
these surfaces). Therefore

G122 gy S N2 g 92 g

Combining these statements we find

~ g —k ( —1_ (nt1) +) 2
P Fl gy S 277 el 1 sy

Recalling (10.4), inserting the last estimate into (10.6), and using the fact that for
each [ there are only boundedly many J’s such that I x J € Qj, we obtain

(” 1) (n + ) 2 2
||f||L4(R" NZ Z 27 q“fIH%/p(snfl)||fJ||%J(sn71))2/q

[XJEQk

ok (n (7L+1)
N 22 7 Z HfIHLP sn-1) z/q-
k

I1€Dy,

The summation in [ is over all dyadic subcubes of ) of side-length 27*. The factor
nd) _ (ot g positive by our assumptions. So the theorem follows if we have

pl
D il nignsy < DN gonsy

1€Dy

This is true if ¢/p > 1. Choosing p/ suff1c1ently close to 2 q we do have ¢/p > 1

due to the assumption ¢ > 2n/(n—1);if p’ = n—Hq, q/p = % > 1. Moreover,

getting the result for some p gives it also for larger p (and smaller p’).

10.2. Localization. We now proceed towards the proof of Tao’s Theorem 10.2.
The main ideas are due to Wolff who proved first the analogous sharp result for
the cone. The first step is to reduce to local estimates.

The following theorem is due to Tao and Vargas, see [TV]. There is also a ver-
sion for one function which was proved earlier by Bourgain. The relations be-
tween p and ¢ are probably not sharp, but all that is really needed is that if the
assumption holds for all o > 0, then the assertion holds for all p > g¢.
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Theorem 10.5. Let S; C S* !, j = 1,2, with dist(S;,5:) 2 1 and f; € S with

spt f; C Sj. Suppose that 1 < p < #53, @ > 0and (1 + ;%) < ; + .25 If

(10.7) || Fifollo(mry Sa ROfill]|fll2 for z € R, R > 1, f; € L*(S;),j = 1,2,
then
(10.8) 11 Falle@ny S 1Al FIl2 for f; € L2(S;),5 = 1,2.

From now on we shall assume that S; is the graph of a smooth function ¢,;. We
shall denote by A(r) the r-neighbourhood {z : dist(z,a) < r} of a set A.
The Fourier transform of the surface measure 0" ! satisfies

o 1(z) < (1+ |2|)#, 2 € R, where 8 = (n — 1)/2.
Our assumptions on p and ¢ in terms of 3 read

B+11, 2a. 1 «
l<p<——,—-(14+—) < -+ .
R I EAAR e
The proof of Theorem 10.5 will be based on three lemmas. The first of these
says that the hypothesis (10.7) yields a similar statement if the functions live in
neighbourhoods of the surface.

Lemma 10.6. (a) If C'is a positive number and 1 a Borel measure on R" such that
(10.9) 1 £l 2y < CIIf]l2 for f € L2(S;),5 = 1,2,
then for all r > 0,

(10.10) 11z S CVrIf]l2 for f e L3(S;(r)),

where S;(r) is the r-neighborhood of S;.
(b) If C'is a positive number and . a Borel measure on R" such that

(10.11) 1£1 Fallzo < Cllfillallfall2 for £ € L2(S;),5 = 1,2,
then for all » > 0,
(10.12) HﬁngLq(u) S CrllAllallfall2 for f1 € L2(Si(r)), fa € L*(Sa(r)).

Proof. Let S;; = {(v,p;(x) +t) : * € V;} and S} = Ujy<,Sjs. It is enough to
prove the lemma for S7 in place of Sj(r) since S;(r/Cy) C S] C S;(Cyr) for some
constant (.

Let f; € L*(S}) and denote f;,(z) = fj(x,¢;(x) +t) for z = (z,p;(x)) € Sj.
Then by Fubini’s theorem,

i) = | / / e 2@V £y S\ dsdy| = | / / eV £ (o (o)) dydu)

[ e (e, ) du| < / Fru(, )l du,
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Thus using Minkowski’s integral inequality, (10.11), Schwartz’s inequality and
Fubini’s theorem,

1Al < (1 [ Faede [ Feaopidps)
~([1[ | Fa@ e dudelrape)

< / | fruf2,0| Lagududv

-r T

<C [ [ Uallallfasladude

<Cv 27‘(/ |f1,u’2du)1/2\/27“(/ | fo0|?dv)
—r J S —r J 8o
~ 207 fill2]| f2]]2-
]

The second lemma shows that a local hypothesis, namely (10.13), gives a global
estimate for functions living in neighbourhoods of the surfaces 5.

Lemma 10.7. Let C and R be positive numbers such that

(10.13)  [|fifallo(sry S CllAlLIf2 for o € R, f; € L*(S;(2/R)),j = 1,2,
then

(10.14) 17 Pllisceny S CllAllal folla for f; € L2(S(1/R)),j = 1,2,

Proof. Let f; € L*(S;(1/R)),j = 1,2. Let¢) € Sbesuchthat0 < ¢ < 1,4 ~ 1
on B(0,1) and ¢) C B(0,1). Cover R" with balls B(zy, R/2),k = 1,2,..., such
that 3", Xp(.») ~ 1. Define ¢y(z) = ¥((x — zx)/R). Then 3, v ~ >, ¢! =~
S X Bl Ui = 1. Moreover spt ¢, C B(0,1/R), whence spt iy * f; C S;(2/R).
Applying (10.13) and Plancherel’s theorem, we obtain

[V f1 foll Lo (Bormy) = 10k * frdw * foll La(Ben,m)

S Ol * fillalln * folla = Clliwwfillalltn follo-

Summing over k we get by Schwartz’s inequality,

If1follo@n) S Z HXB(mk,R)wszfQHLq(R")
k
= i frfoll cosry S C Y Ienfill2llvefsll:
k
<CO Nl O e fall3)
k k

~ Cll fillall f2l2-
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Corollary 10.8. Assuming (10.7) we have for all R > 1,

(10.15) 11 Follzaen) S RO Aillal| foll2 for f; € L2(S;(1/R)),j = 1,2.

Proof. Applying the assumption (10.7) and Lemma 10.6 with p = £"| B(z,r) we
have

1P ol lcaem) S B Al 1] for z € R, f; € L*(S;(2/R)),j = 1,2.
Hence the corollary follows by Lemma 10.7. O

The third lemma tells us how estimates on functions defined in neighborhoods
of the surfaces S; lead to estimates for functions defined on the surfaces them-
selves.

Lemma 10.9. For any F' € L>* N L' with ||F||., < 1and any N, R > 1,

(10.16) |/F9192 v RP|F3 EES +ZRQ kNHF92”L2(Sl(2’“/R))
=0

for all g; € L*(S;) with ||g;|l12(s;) < 1, and
(10.17) ‘/F9A1hA2|2 N ARTHIF| 242 +ZR2 kNHFh2”L2(Sl 2k /R))>

for all g1 € L2(Sl),h2 S L2<52()\/R)),)\ > 0 with H91HL2(51) S 1, Hh2||2 S 1.

Proof. By the product formula, Schwartz’s inequality and Plancherel’s theorem, ,

‘/Fgng \/ngéhdUn 1\2

< VPRl Il < [ (F@)x o™ )FG
By Holder’s inequality and the Stein-Tomas restriction theorem, Theorem 4.4,
(10.18) IEGs Iy < [ ]l2s52 | Gsll 522 S Il
B+2 B B+2

Choose ¢ € S such that ¢ = 1 on B(1), ¢ vanishes outside B(2) and write " ! as

ol = 71 + T with 7/'1(1') = QD({E/R)O/'E(ZE)

Then
1) S R,
and so by (10.18)
(10.19) / (F@) BTG < Bl FRIE < B Flfdps.

Next we estimate | [((Fg)*71)F g|. By Plancherel’s theorem (note that 7; € L?)

| [(F3) «RFGI S [ 1F@PIm)
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Using the rapid decay of ¢ one checks easily that

i (z)] = |R" / H(R(y — 2))dovy| <x RO+ d(z, $))V.
Hence

| [(F@) < TR S 3 R [ FG s,/
k=0
This proves (10.16). To prove (10.17) we argue in the same way but use Stein-
Tomas theorem in combination with Lemma 10.6(a) to have

ol zase S AV2RTV2.
L]

In order to complete the proof of Theorem 10.5 we shall prove that for any
measurable set A C R" with 1 < £L"(A) < oo,

1020)  [Padi@lloen S LAY g1l lallglls for g, € L2(S;),5 = 1,2

Let us first see how this implies the theorem. Fix f; € L*(S;),j = 1,2, with
£l z2(s,) = 1. Apply (10.20) with

A={z:|fifo(x)] > A}, A > 0.

Note that £"(A) < oo because fj € L™ for some p, < oo by the Stein-Tomas
restriction theorem. Then by (10.20), if L*(A) > 1,

AL"(A) < HXAJ?lszLl(Ln) < LA
which gives
L{x: |fifo(z)] > A}) € max{A7?,1}.
Combining this weak type inequality with the trivial inequality
1 falloo S 1,

(10.8) follows by interpolation.
Applying Lemma 10.9 with N = 3 and choosing (notice that the exponent be-
low is positiveas 1 < p < %)

55—

(10.21) R=L"(A)s a0,
we obtain

N s B2 Nem e
|/XA9192|2 S RLYA) T 4 R2HM[xaG172 5, 0/
k=0

= LA + ) B2 Xa 75, 2/
k=0
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Here
IXAG2ll L2, 2%/ R)) = sup /XAgAzth
WPkl 2 s, on /) St
= sup /XAgAzhl,k-

P2kl 2 (s, 2y <

We can repeat the above argument with g, playing the role of g, and h, ; playing
the role of go. Now hy is in L?(S;(2%/R)) with norm at most 1 and we have by
(10.17)

—

| /XAgAzhl,lJ2 S2PRTILM(APY + ZRQ_SI||XAh1,kH%2(sl(2l/R))5
s

Again
- = - =
IXAh1kll 250 2tR)) = sup /XAhl,khzz
W2l 2 5y 2t/ ) <1
< sup Ixahtkhol L @ny.-
HhZ,lHLQ(Sz(Ql/R))Sl
By Holder’s inequality

Al ol sy < LAY ([ ghogl agen)-
By Corollary 10.8 we have for £ </,
1Py ghall poeny S B2

Combining these inequalities,

X120 Lr )

§ £n<A>2/p’ + Z R273k Z R273l£n(A)2/q’R2a72221

k=0 1=0
~ LM(A)YY 4 LAY R

Recalling how we chose R in (10.21) we see that

ﬁn(A>2/q/R2a _ EH(A)z/q/+%(%_§).
Since
200, B+2 2

2/q" + F(m - 27) <2/p

the desired inequality (10.20) follows and the proof of the theorem is complete.
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10.3. Induction on scales. The second crucial idea is an induction on scales ar-
gument due to Wolff. That is, (10.7) is reduced to

Proposition 10.10. There is a constant ¢ > 0 such the following holds. Suppose
that (10.7) holds for some « > 0:

(10.22) ||frfollio(ser) Sa REIf1ll2|lf2l]2 for 2 € R®, R > 1, f; € L*(S;),j = 1,2.

Then for all 0 < §,e < 1 there exists a constant C' such that
(10.23)

1 f1 Fol | La(Beery < CR™CU=DEE| 11| fo||o, 2 € R™, R > 1,spt f; C S},

Then Proposition 10.10 implies (10.7) for all o > 0. To see this note that || f;|sc <
|| f;||2 by Schwartz’s inequality, whence (10.7) holds for o = ay = s/q. Fixe > 0
and define
aj1 =ca;/(aj+c)+e,j=0,1,2,...,

Suppose (10.7) holds for a = «; for some j. Apply Proposition 10.10 with § =
d; = o/ (a; + ¢). Then

max{a;(1 —9),cd} = ca;/(a; + ¢),
and it follows that (10.7) holds for & = «;;. It is easy to check that
aj = (e +Ve2 +4ce)/2.

Since we can choose ¢ arbitrarily small, (10.7) holds for all o > 0.

10.4. Wavepacket decomposition. The proof of Proposition 10.10, which is the
core of the whole argument, uses the third basic tool: the wavepacket decomposi-
tion. Fix R > 1 and let again S; = {(v,¢;(v)) :v € V;} Cc S* LV, CcR" ' j=1,2,
be such that dist(S1,52) > 1 and let f; € L*(S;). The wavepacket decomposition
allows us to write j‘; as a sum of functions p, ,, which together with their Fourier
transforms are well localized: '

(10.24) Fi(,) = Sy puy (2,1),§ = 1,2.

The indices w; (Where w; is always related to S; and w, to Sy) are of the form
(y;,v;) where v;’s run through a 1/v/R-separated set in V; and y,’s run through

a v R-separated set in R"~'. The functions p,, are essentially supported in the
tubes (that is, decay very fast off them)

T, = {(z,t) 1 |t| < R, |z — (y; + tVe;(v;))| < R'?}

and their Fourier transforms have supports in S; N B((vj, »;(v;)),2/vR). The
transversality assumptions on S; and S, guarantee that any two tubes 7),, and
T., are transversal.

The proof of the wavepacket decomposition involves several technicalities, but
in principle it is not very difficult. Here are the main ideas: First find (using the
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so-called Poisson summation formula) the C*°-functions n and ) on R""! such
that

spt7) C B(0,1),spty) € B(0,1), Y mla—k)= > d(x—k) =1forzeR"".
keznr—1 kezn—1
Define for y; € RY2Z" ! and v; € R™Y2Z" 1NV,
T+ Y

Ty; () = n( \/E )71/}1@' (v) = w(\/ﬁ(v - Uj)), T,V € R™ 1,

Then
My, (V) = RMD22m v yin(/ Ry, spt 7, C B(0, 1/V'R),spt ¥, C B(vy, 1/VR).
Defining g; on V; by g;(v) = f;(v, ¢(v), we have

Znyj =landg; = Zz/)ngj.
vj

Yj
Thus o
9; = Z]:_l(wngjnyj)'
Vj,Y;5

Now the functions p, .,

Py, v, (:E,t) = / 62”"(:0’”_15%(”))]:_1(@ij)(v)dv, (37>t) eR" ! x R,
Vi

have the required properties. The decomposition ]?j(a@ t) = Yuw,Pw,(7,t) and the

fact s@ C S; N B((vj,;(v;)),2/VR) are easily checked. The fast decay of p,,

outside T,,, follows by stationary phase estimates, more precisely, by Theorem
3.4.

10.5. The final geometric and combinatorial estimates. In order to prove Propo-
sition 10.2, and thus complete the proof of Theorem 10.10, we need, by (10.24), the
estimate

szjpmpwzHLq(Q(R)) S RE(R(I_&& + RC&)‘
Here Q(R) is the cube of sidelength R centered at the origin. Some pigeonholing
arguments and normalizations of the functions p,,, reduce this to

| Suw; e, Doy Paos | L@y S BE(RY™V + RO) /W1 W,
for arbitrary subsets IV, of the index sets under the conditions

1pw lloo S RO

~Y

Next the cube Q(R) is decomposed into cubes Q € Q of side-length R'~?, a rela-
tion w; ~ @ is defined and the above sum is split to the local part; w; ~ @ and
wy ~ @, and the far-away part; wy ¢ @ or wy % Q). Local here means that for a
given w; the cubes ) with w; ~ @ are contained is some cube with side-length
~ R'~° which allows us to use the induction hypothesis (10.22) to get the upper
bound Rf R~ /EW, W, for this part of the sum.
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The far-away part will be estimated by R°R“/§WiW,. First there is the L!-
estimate

[ > Pur P |11(0) S RIFW)Y2 (W) 2,

w1 €W, w2 €Wa,w1£Q or wakQ

which follows by some L*-estimates for the functions p,,,. Hence by interpolation
the required estimate is reduced to showing that for every () € Q,

I > PurPus |lr2@) S RO (W) V2.
w1 GWl,wQEWQ,UAf)LQ or UJQ%/Q
Next Q(R) is split into cubes P € P of side-length v/R. We are lead show that for
any ) € Q,

> > Pus Pun |2y S RO (#W0) (#W7).

PeP,PC2Q RéPmTwﬂé@,wwaQ or wabQ

The reduction to R°P N Ty, # 2 follows from the fast decay of p,, outside T),,.
The far-away porperty involves that we can sum over such w; that when F, C 20Q)
there are many P € P for which R°P N T,,, # @. Writing

| | Z Puwy Puws | |§ = Z /pw1pw2pw’1pw’27

w1 €U1,w2eU> wy,w) €U ,wheUs
and
_ — — N
Puw1 PwyPuw!, Puwly = Puwr Pwa P!, Pwly, = (pw1 *pwz)pw’l * Pl

the support properties p,, ’s are used to estimate

| / Pus Py P Py | S RT7212,

Furthermore, the support properties yield that if we fix w; and w/, and if v} is such
that [ pu, pu,PuPu; # 0 for some w,, then v} lies in an R~'/?-neighborhood of a
smooth hypersurface depending on w, and wj. The geometry of this surface is
well understood because of the initial transversality and curvature assumptions
for the surfaces S;. For the functions ¢; they require that the directions of the
gradients are separated and also a non-degeneracy condition of the Hessians.
These and the transversality of the tubes 7}, and T,,, lead to good estimates on
the number of indices for which [ p,, Puwr P, Pwy, 7 0 completing the proof.

10.6. Multilinear restriction and improvements by Bourgain and Guth. In [BCT]
Bennet, Carbery and Tao proved multilinear restriction and Kakeya estimates.
For example, in three dimension they proved

I fifofsllzams) S 1 f1llzeocsi)ll f2ll oo s [ f3]l Loo (s5)

provided ¢ > 3 and the normals 71, ne, ng of the surfaces Sy, S,, S; are never close
to a two-dimensional plane. Bourgain and Guth used this, together with Kakeya
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arguments, to improve the restriction estimates to

Il Laqesy S | fllzee(s2) for f € Lo(S?), p > 33/10.

Recall that Tao’s bilinear estimate and Theorem 10.4 gave this for p > 10/3 so
there is an improvement by 1/30. Both papers deal with many other aspects and
in general dimensions.

[BCT]
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