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These notes are quite inofficial and meant to give some support for the lectures.
They are not complete, for example, in the lectures more details of the proofs can
be given.

The lecture notes of Wolff [W] is the book closest to these lectures in content
and spirit. Stein’s book [S] covers also large part of this material. Some topics
are discussed in Sogge’s book [So] and those of Grafakos [G1] and [G2]. The
lecture notes of Mitsis [Mi] give a nice survey. For the basics of Fourier analysis
Duoandikoetxea [D] is excellent.

1. FOURIER TRANSFORMS

1.1. Fourier transform in L1 and L2. The following basic facts about Fourier
transforms of functions can be found in most standard books in Fourier analy-
sis. Good references are [D] and [W].

The Fourier transform of a Lebesgue integrable function f ∈ L1(Rn) is defined
by

(1.1) F(f)(ξ) = f̂(ξ) =

∫
f(x)e−2πiξ·xdx.

The following formulas follow easily by Fubini’s theorem:

(1.2)
∫
f̂ g =

∫
fĝ, f, g ∈ L1, (product formula),

(1.3) (̂f ∗ g) = f̂ ĝ, f, g ∈ L1, (convolution formula).

Trivial changes of variables show how Fourier transform behaves under simple
transformations. For a ∈ Rn and r > 0 define the translation τa and dilation δr by

τa(x) = x+ a, δr(x) = rx.

Then for f ∈ L1,

(1.4) f̂ ◦ τa(ξ) = e2πia·ξf̂(ξ), F(e2πia·xf)(ξ) = f̂(ξ − a),

(1.5) f̂ ◦ δr(ξ) = rnf̂(rξ).

The orthogonal group O(n) of Rn consists of linear maps g : Rn → Rn which
preserve inner product: g(x) · g(y) = x · y. Then

(1.6) f̂ ◦ g = f̂ ◦ g for g ∈ O(n).

The proof of the following Riemann-Lebesgue lemma is also easy:

(1.7) f̂(ξ)→ 0 when |ξ| → ∞ and f ∈ L1.
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The following inversion formula is a bit trickier to prove:

(1.8) f(x) =

∫
f̂(ξ)e2πiξ·xdξ if f, f̂ ∈ L1.

We denote the inverse Fourier transform of g ∈ L1 by

F−1(g)(x) = ǧ(x) =

∫
g(ξ)e2πiξ·xdξ.

Proof. Here is a quick proof, some details more are given in [D] and [W]. Define

Γ(x) = e−π|x|
2

,Γε(x) = e−πε
2|x|2 .

Then Γ̂ = Γ. This follows from the definitions by complex integration or by
observing that when n = 1, Γ and Γ̂ satisfy the same differential equation f ′(x) =
−2πxf(x) with the initial condition f(0) = 1. We have then

Γ̂ε(ξ) = ε−ne−π|ξ|
2/ε2 .

Denote

Iε(x) =

∫
f̂(ξ)e−πε

2|x|2e2πiξ·xdξ.

Then by Lebesgue’s dominated convergence theorem,

Iε(x)→
∫
f̂(ξ)e2πiξ·xdξ as ε→ 0.

On the other hand, denoting gx(y) = e−πε
2|y|2e2πiξ·y, we have ĝx(y) = Γ̂ε(y − x) =

Γε(x− y), where Γε(y) = ε−nΓ(y/ε). By the product formula,

Iε(x) =

∫
f̂ gx =

∫
fĝx = Γε ∗ f(x).

The functions Γε, ε > 0, provide a standard approximate identity for which Γε ∗
f → f as ε→ 0. The combination of these two limits gives the inversion formula.

�

The Schwartz space S of rapidly decreasing functions is very convenient in
Fourier analysis. It consists of infinitely differentiable complex valued functions
f on Rn which together with their partial derivatives of all orders tend to zero at
infinity more quickly than |x|−k for all integers k. Observe that C∞0 ⊂ S.

The first basic fact is that

(1.9) f ∈ S if and only if f̂ ∈ S.

This follows from the formulas for partial derivatives, which in turn follow easily
by partial integration: if f ∈ S (or more generally under some obvious condi-
tions):

(1.10) ∂̂αf(ξ) = (2πiξ)αf̂(ξ),
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(1.11) ∂αf̂(ξ) = F((−2πix)αf)(ξ).

Here α = (α1, . . . , αn), αj ∈ N = {0, 1, . . . }, xα = xα1
1 · · · · · xαnn and ∂α means αj

partial derivatives with respect to xj .
Secondly, we have

(1.12)
∫
fḡ =

∫
f̂ ¯̂g, f, g ∈ S, (Parseval),

(1.13) ||f ||2 = ||f̂ ||2, f, g ∈ S, (Plancherel),

Parseval’s formula (which of course gives Plancherel’s formula) is an easy con-
sequence of the inversion formula and the product formula:∫

fḡ =

∫ ̂̂
f(−x)ḡ(x)dx =

∫ ̂̂
f(x)ḡ(−x)dx =

∫
f̂(x)ĥ(x)dx,

where h(x) = ḡ(−x). We see immediately from the definition of Fourier transform
that ĥ(x) = ĝ(x), which proves Parseval’s formula.

So the Fourier transform is a linear L2-isometry of S onto itself. The formula
(1.1) cannot be used to define Fourier transform for L2-functions; the integral
need not exist if f is not integrable. But S is dense in L2, so (1.9) and (1.15) give
immediately a unique linear extension of the Fourier transform to L2. Thus we
have f̂ defined for all f ∈ L1 ∪ L2. Parseval’s and Plancherel’s formulas extend
now immediately to L2:

(1.14)
∫
fḡ =

∫
f̂ ¯̂g, f, g ∈ L2, (Parseval),

(1.15) ||f ||2 = ||f̂ ||2, f, g ∈ L2, (Plancherel).

1.2. Fourier transforms of measures and distributions. We denote by M(Rn)
the set of finite Borel measures µ on Rn (outer measures for which Borel sets
are measurable, but sometimes we may mean by Borel measure also a signed or
complex measure). The Fourier transform of µ ∈M(Rn) is defined by

(1.16) µ̂(ξ) =

∫
e−2πiξ·xdµx.

When µ has compact support, µ̂ is a bounded Lipschitz continuous function
(an easy exercise). It need not be in any Lp for p <∞; for example δ̂a(ξ) = e−2πiξ·a.
The product formula has by Fubini’s theorem an easy extension to measures:

(1.17)
∫
µ̂dν =

∫
ν̂dµ, µ, ν ∈M(Rn).
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As for functions, we can approximate measures with smooth compactly sup-
ported functions using convolution. Let (ψε) be a C∞ approximate identity such
that

ψε(x) = ε−nψ(x/ε), ε > 0, ψ ≥ 0,

∫
ψ = 1.

Then

ψ̂ε(ξ) = ψ̂(εξ)→ ψ(0) =

∫
ψ = 1 as ε→ 0.

We define the the convolution f ∗ µ by

f ∗ µ(x) =

∫
f(x− y)dµy,

when the integral exists. Setting for a finite Borel measure µ, µε = ψε ∗µ, we have
that µε converges weakly to µ as ε→ 0, that is,∫

gµε →
∫
gdµ for all g ∈ C0(Rn),

and
µ̂ε = ψ̂εµ̂→ µ̂ uniformly.

We have for µ ∈M(Rn) and f ∈ S (and for much more general f ),

(1.18) f̂ ∗ µ = f̂ µ̂,

(1.19) f̂ µ̌ = f̂ ∗ µ,

(1.20) f̂µ = f̂ ∗ µ̂.

We leave the easy proofs as exercises.
A very general way to define Fourier transform is to do it for distributions:

Definition 1.1. A tempered distribution is a continuous (in a suitable sense, see
[D]) linear functional T : S → C. Its Fourier transform is the tempered distribu-
tion T̂ defined by

T̂ (ϕ) = T (ϕ̂) for ϕ ∈ S.

This definition agrees with the earlier ones when T corresponds to a function
in L1 ∪ L2 or a finite Borel measure.

1.3. Fourier transform in Lp. All Lp-functions, 1 ≤ p ≤ ∞, and more generally
all locally integrable functions f such that for some constants C and m, |f(x)| <
C|x|m when |x| > 1, can be considered as tempered distributions Tf :

Tf (ϕ) =

∫
fϕ, ϕ ∈ S,

and so they have Fourier transform as a tempered distribution.
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For 1 < p < 2 we can also make use of L1 and L2: any f ∈ Lp, 1 < p < 2, can be
written as f = f1 + f2, f1 ∈ L1, f2 ∈ L2, and then f̂ = f̂1 + f̂2. For p = 2 we have
the Plancherel identity and for p = 1 we have the trivial estimate:

‖f̂‖∞ ≤ ‖f‖1.

From these the Riesz-Thorin interpolation theorem gives the following Hausdorff-
Young inequality:

(1.21) ‖f̂‖q ≤ ‖f‖p for f ∈ Lp, 1 < p < 2, q =
p

p− 1
.

No such inequality holds when p > 2.
Since we shall use Riesz-Thorin also later, we state it here. For a proof, see for

example [K] or [G1].

Theorem 1.2. Let (X,µ) and (Y, ν) be two measure spaces and T a linear operator
such that, for some 1 ≤ p0, p1, q0, q1 ≤ ∞,

‖T (f)‖Lq0 (ν) ≤ C0‖f‖Lp0 (µ) for all f ∈ Lp0(µ),

and
‖T (f)‖Lq1 (ν) ≤ C1‖f‖Lp1 (µ) for all f ∈ Lp1(µ),

Then for all 0 < θ < 1,

‖T (f)‖Lq(ν) ≤ C1−θ
0 Cθ

1‖f‖Lp(µ) for all f ∈ Lp(µ),

where
1

p
=

1− θ
p0

+
θ

p1

and
1

q
=

1− θ
q0

+
θ

q1

.

2. FOURIER TRANSFORM OF RADIAL FUNCTIONS

This section is mainly based on [SW]. Watson’s book [Wa] contains a lot of
information on Bessel functions.

One of the goals of this section is to find the Fourier transform of the surface
measure on the sphere

Sn−1 = {x ∈ Rn : |x| = 1}.
Let’s first compute the simpler example of the length measure λ on the line seg-
ment I = [−(1, 0), (1, 0)] in R2:

λ̂(η, ξ) =

∫ 1

−1

e−2πi(ηx+ξ0)dx =

∫ 1

−1

cos(2πηx)dx =
sin(2πη)

πη
.

We see that λ̂(η, ξ) tends to 0 for a fixed ξ when η tends to ∞, but it remains
constant for a fixed η when ξ tends to ∞, and hence does not tend to 0 when
|(η, ξ)| → ∞.

We denote by σn−1 the surface measure on Sn−1, and sometimes also by σm the
surface measure onm-dimensional spheres in Rn. LettingLn denote the Lebesgue
measure, we have that σn−1 is the weak limit of the measures
δ−1Lnb(B(0, 1 + δ) \ B(0, 1)) as δ → 0. Here µbA is the restriction of the measure
µ to the set A; µbA(B) = µ(A ∩B).
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To find the Fourier transform of σn−1 we first compute the Fourier transform
of a radial function. Suppose f ∈ L1(Rn), f(x) = ψ(|x|), x ∈ Rn, for some
ψ : [0,∞) → C. We shall use the following two Fubini-type formulas which can
either be proven by standard calculus or deduced from a general coarea formula.

If f ∈ L1(Rn), then

(2.1)
∫
Rn
f dLn =

∫
Sn−1

(∫ ∞
0

f(rx)rn−1 dr

)
dσn−1x.

Fix e ∈ Sn−1 and denote Sθ = {x ∈ Sn−1 : e · x = cos θ}. Then for g ∈ L1(Sn−1),

(2.2)
∫
Sn−1

g dσn−1 =

∫ π

0

(∫
Sθ

g(x) dσn−2x

)
dθ.

Applying (2.1) and Fubini’s theorem,

f̂(re) =

∫
f(y)e−2πire·ydLny =

∫ ∞
0

ψ(s)sn−1

(∫
Sn−1

e−2πirse·xdσn−1x

)
ds.

The inside integral can be computed with the help of (2.2), since e−2πirse·x is con-
stant in Sθ: ∫

Sn−1

e−2πirse·xdσn−1x =

∫ π

0

e−2πirs cos θσn−2(Sθ) dθ.

The set Sθ is an (n− 2)-dimensional sphere of radius sin θ, so

σn−2(Sθ) = b(n)(sin θ)n−2,

where b(n) = σn−2(Sn−2).
Changing variable cos θ 7→ −t and introducing the Bessel functions Jm : [0,∞)→

C, where m > −1/2:

(2.3) Jm(u) :=
(u/2)m

Γ(m+ 1/2)Γ(1/2)

∫ 1

−1

eiut(1− t2)m−1/2dt,

we obtain ∫
Sn−1

e−2πirse·xdσn−1(x) = b(n)

∫ 1

−1

e2πirst(1− t2)(n−3)/2dt

= c(n)(rs)−(n−2)/2J(n−2)/2(2πrs).

This leads to the formula for the Fourier transform of the radial function f :

(2.4) f̂(x) = c(n)|x|−(n−2)/2

∫ ∞
0

ψ(s)J(n−2)/2(2π|x|s)sn/2 ds.

A basic property of Bessel functions is the following decay estimate, which we
shall prove in the next section:

(2.5) Jm(t) ≤ C(m)t−1/2 for t > 0.
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When m = k − 1/2, k ∈ {1, 2, . . . }, repeated partial integrations show that the
Bessel function Jm can be written in terms of elementary functions in the form
from which (2.5) easily follows. In particular,

(2.6) J1/2(t) =

√
2√
πt

sin t.

All Bessel functions behave roughly like this at infinity, that is,

(2.7) Jm(t) =

√
2√
t

cos(t− πm/2− π/4) +O(t−3/2), t→∞.

This can be verified with a fairly simple integration, see [SW], pp. 158-159.
Applying the formula (2.4) to the characteristic function of the annulus

B(0, 1 + δ) \B(0, 1) and letting δ → 0, we get

(2.8) σ̂n−1(x) = c(n)|x|(2−n)/2J(n−2)/2(2π|x|).

Consequently,

(2.9) |σ̂n−1(x)| ≤ C(n,m)|x|(1−n)/2 for x ∈ Rn.

This is the best possible decay any measure on a smooth hypersurface, in fact, on
any set of Hausdorff dimension n − 1. The reason for getting such a good decay
for σ̂n−1 is curvature; for example segments are not curving at all but circles are
curving uniformly. Also for more general surfaces curvature properties play a
central role in the behaviour of Fourier transforms. We shall discuss this a little
more in the next section.

3. ESTIMATES ON OSCILLATORY INTEGRALS (STATIONARY PHASE)

Sogge [So] and Wolff [W] cover this material and Stein [S] goes much further.
In this section we study integrals of the type

(3.1) I(λ) =

∫
eiλϕ(x)ψ(x)dx, λ > 0,

and in particular their behaviour as λ → ∞. As a standing assumption the func-
tions ϕ and ψ defined on Rn will be smooth and ψ will have compact support, ϕ
is real valued and ψ complex valued. As special cases we obtain the estimates for
the Bessel functions and Fourier transform of the surface measure on the sphere
mentioned in the previous section.

3.1. One-dimensional case. We begin by studying the one-dimensional case.

Theorem 3.1. If ϕ′(x) 6= 0 when x ∈ sptψ, then for every N ∈ N,

I(λ) ≤ CNλ
−N .
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The constant CN may of course depend on ϕ and ψ (here and later in this section).
In particular, we can take

C1 =

∫
| d
dx

(
ψ(x)

ϕ′(x)
)|dx.

Proof. Integrating by parts,

|I(λ)| = |
∫

1

iλϕ′(x)

d

dx
(eiλϕ(x))ψ(x)dx| = | −

∫
eiλϕ(x) d

dx
(
ψ(x)

iλϕ′(x)
)dx| ≤ C1/λ.

The cases N ≥ 2 follow by similar calculations. �

If ϕ′(x) = 0 but some higher order derivative does not vanish, the following
van der Corput’s lemma is useful:

Theorem 3.2. Suppose k ∈ {1, 2, . . . } is such that |ϕ(k)(x)| ≥ 1 for x ∈ [a, b]. Then
with Ck = 5 · 2k−1 − 2,

(3.2) |
∫ b

a

eiλϕ(x)dx| ≤ Ckλ
−1/k

if i) k ≥ 2 or
ii) k = 1 and ϕ′ is monotone.

Proof. Suppose first ii). Integrating by parts

|
∫ b

a

eiλϕ(x)dx| = | e
iλϕ(b)

iλϕ′(b)
− eiλϕ(a)

iλϕ′(a)
−
∫ b

a

eiλϕ(x) d

dx
(

1

iλϕ′(x)
)dx|

≤ 2λ−1 + λ−1

∫ b

a

| d
dx

(
1

ϕ′(x)
)|dx| = 2λ−1 + λ−1|ϕ′(b)−1 − ϕ′(a)−1| ≤ 3λ−1.

where in the last equality and inequality we used the facts that d
dx

( 1
ϕ′(x)

) and ϕ′(x)

do not change sign on [a, b].
Suppose then that k ≥ 2. We use induction on k and assume that (3.2) holds for

k−1. We may assume that ϕ(k)(x) ≥ 1 for x ∈ [a, b], since ϕ(k) does not change sign
on [a, b]. Then ϕ(k−1) is strictly increasing and there is a unique c ∈ [a, b] such that
|ϕ(k−1)(x)| has its minimum at c. Either ϕ(k−1)(c) = 0 or c = a or c = b. Suppose
ϕ(k−1)(c) = 0 and let δ > 0. Then |ϕ(k−1)(x)| ≥ δ when x ∈ [a, b] \ [c− δ, c + δ] and
the induction hypothesis gives

|
∫ c−δ

a

eiλϕ(x)dx| ≤ Ck−1(λδ)−1/(k−1)

and

|
∫ b

c+δ

eiλϕ(x)dx| ≤ Ck−1(λδ)−1/(k−1).

Since

|
∫ c+δ

c−δ
eiλϕ(x)dx| ≤ 2δ,
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we obtain

|
∫ b

a

eiλϕ(x)dx| ≤ 2Ck−1(λδ)−1/(k−1) + 2δ.

Choosing δ = λ−1/k we get

|
∫ b

a

eiλϕ(x)dx| ≤ (2Ck−1 + 2)λ−1/k.

If c = a or c = b, a similar argument gives

|
∫ b

a

eiλϕ(x)dx| ≤ Ck−1(λδ)−1/(k−1) + δ,

and we can again take δ = λ−1/k.
As 2Ck−1 + 2 = 5 · 2k−1 − 4 < Ck, the proof is complete. �

Corollary 3.3. Under the assumptions of Theorem 3.2, for any C∞-function ψ :
R→ C and for a < b,

|
∫ b

a

eiλϕ(x)ψ(x)dx| ≤ Ckλ
−1/k(|ψ(b)|+

∫ b

a

|ψ′(x)|dx).

Proof. Let

F (x) =

∫ x

a

eiλϕ(t)dt.

Then ∫ b

a

eiλϕ(x)ψ(x)dx =

∫ b

a

F ′(x)ψ(x)dx = F (b)ψ(b)−
∫ b

a

F (x)ψ′(x)dx,

and by Theorem 3.2, |F (x)| ≤ Ckλ
−1/k for all x ∈ [a, b], from which the theorem

follows. �

We discuss now applications to Bessel functions and the surface measure σn−1

on the sphere Sn−1. We defined in (2.3)

Jm(t) :=
(t/2)m

Γ(m+ 1/2)Γ(1/2)

∫ 1

−1

eits(1− s2)m−1/2ds,

for m > −1/2. For the formula for radial functions and σ̂n−1 we only need the
integral and half integral values of m. When m − 1/2 is a positive integer, we
already observed in (2.7) that the estimate (2.5) holds. When m ∈ N, we have the
alternative formula:

Jm(t) =
1

2π

∫ 2π

0

eit sin θe−imθdθ.

This is easily checked for m = 0, and for m > 0 it follows by induction from the
following recursion relation, whose proof is a routine verification:

d

dt
(t−mJm(t)) = tmJm+1(t).
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This alternative formula combined with Corollary 3.3 yields (2.5). We apply
Corollary 3.3 with λ = t and ϕ(x) = sinx. Then ϕ′(x) = 0 when x is π/2 or
3π/2 and ϕ′′(x) = ±1 for these values of x. We can find functions ψ1, ψ2 and ψ3

such that ψ1 + ψ2 + ψ3 = 1, ψ1 has support and equals 1 near π/2, and ψ2 has
support and equals 1 near 3π/2. Then we can write Jm(t) as a sum of three terms,
to two of them we apply Corollary 3.3 with k = 2 and to one of them we apply
Theorem 3.1.

Thus we get decay estimate (2.8) for the spherical surface measure. This argu-
ment is heavily based on the radial symmetry of the sphere; it helped us to reduce
to one-dimensional integrals. For other surface measures we need analogous es-
timates for higher dimensional integrals, which we investigate now.

3.2. Higher dimensional case. For the rest of this section ϕ and ψ will be smooth
functions in Rn with ψ having a compact support, ϕ is real valued and ψ complex
valued. We denote again

I(λ) =

∫
eiλϕ(x)ψ(x)dx, λ > 0.

Theorem 3.4. If ∇ϕ(x) 6= 0 when x ∈ sptψ, then for every N ∈ N,

(3.3) I(λ) .N λ−N .

Proof. Suppose first that for some j, ∂jϕ(x) 6= 0 for x ∈ sptψ. Then by Fubini’s
theorem, writing x̃ = (x1, . . . , xj−1, xj+1, . . . , xn), and C = {x̃ : x ∈ sptψ},

I(λ) =

∫
C

(

∫
R
eiλϕ(x)ψ(x)dxj)dx̃.

An application of Theorem 3.1 to the inner integral yields (3.3), obviously the
proof of Theorem 3.1 shows that the constants involved are independenof x̃.

In the general case we can cover sptψ with finitely many balls Bk such that
some ∂ϕjk(x) 6= 0 for x ∈ Bk. Writing ψ =

∑
k ψk with sptψk ⊂ Bk, the theorem

follows. �

Next we consider points where the gradient vanishes. We call such points crit-
ical. A point x0 is called a non-degenerate critical pont of ϕ if ∇ϕ(x0) = 0 and the
Hessian determinant

hϕ(x0) := det(∂j∂kϕ(x0)) 6= 0.

The corresponding Hessian matrix is denoted by

Hϕ(x0) := (∂j∂kϕ(x0)).

Theorem 3.5. If all critical points of ϕ in sptψ are non-degenerate, then

(3.4) |I(λ)| . λ−n/2.

Proof. We may assume that sptψ ⊂ B(0, 1), ‖ψ‖∞ ≤ 1, ‖∇ψ‖∞ ≤ 1 and ‖Hϕ‖∞ ≤
1. We consider first the case where ϕ is a special quadratic polynomial, ϕ = Q:

Q(x) = x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n.
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We use induction on n to prove that for any special quadratic polynomial Q in Rn

as above and for any smooth ψ with sptψ ⊂ B(0, 1), ‖ψ‖∞ ≤ 1 and ‖∇ψ‖∞ ≤ 1,

|
∫
eiλQ(x)ψ(x)dx| ≤ Cnλ

−n/2,

where Cn depends only on n.
The case n = 1 follows from Corollary 3.3. Suppose the result holds for n − 1.

By Fubini’s theorem

I(λ) = λ−1/2

∫
eiλ(x22+···+x2k−x

2
k+1···−x

2
n)ψλ(x2, . . . , xn)d(x2, . . . , xn),

where

ψλ(x2, . . . , xn) = λ1/2

∫
eiλx

2
1ψ(x1, . . . , xn)dx1.

Corollary 3.3 tells us that |ψλ(x2, . . . , xn)| . 1 and |∇ψλ(x2, . . . , xn)| . 1, the lat-
ter applying Corollary 3.3 to the first order partial derivatives of ψ in place of
ψ and using our boundedness assumption on the first and second order partial
derivatives of ψ. The induction hypothesis gives that

|
∫
eiλ(x22+···+x2k−x

2
k+1−···−x

2
n)ψλ(x2, . . . , xn)d(x2, . . . , xn)| . λ(1−n)/2.

The theorem follows from these for such quadratic polynomials.
For the general case we use the following calculus lemma, called Morse’s lemma:

Lemma 3.6. Let ϕ : U → R be a C∞ with U ⊂ Rn open, x0 ∈ U , such that ϕ(x0) =
∇ϕ(x0) = 0 and hϕ(x0) 6= 0. Then there exists a diffeomorphism G : V → W with
V,W ⊂ Rn open, 0 ∈ V, x0 ∈ W , and for some k ∈ {1, . . . , n},

ϕ ◦G(x) =
k−1∑
j=1

x2
j −

n∑
j=k

x2
j for x ∈ V.

Proof. We may assume x0 = 0. We may also assume that the matrix Hϕ(0) is diag-
onal with all diagonal elements non-zero. This is achieved by first diagonalizing
Hϕ(0) by an orthogonal transfomationO so that S = O−1 ·Hϕ(0)·O is diagonal. By
direct computation using chain rule Hϕ◦O(0) = OT ·Hϕ(0) ·O. Since the transpose
OT is O−1, we have Hϕ◦O(0) = S, which justifies our assumption.

Under this assumption, ∂1ϕ(0) = 0 and ∂2
1ϕ(0) 6= 0. By implicit function theo-

rem there is a smooth function g : W1 → R,W1 ⊂ Rn−1 open, 0 ∈ W1, such that
g(0) = 0 and

∂1ϕ(g(x̃), x̃) = 0 for x̃ = (x2, . . . , xn) ∈ W1,

and ∂1ϕ(x1, x̃) 6= 0 when (x1, x̃) ∈ U, x̃ ∈ W1 and x1 6= g(x̃). Let ψ = ϕ ◦ F, F (x) =
(x1 + g(x̃), x̃). Then by chain rule ∂1ψ(0, x̃) = 0 and ∂2

1ψ(0, x̃) 6= 0 for x̃ ∈ W1 and
by Taylor’s theorem, taking W1 sufficiently small, we can write

ψ(x) = ψ(0, x̃)± h(x)x2
1, h(x) > 0.
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Define E(x) = ( x1√
h(x)

, x̃). Then

ψ ◦ E(x) = ±x2
1 + ψ(0, x̃)

and so
ϕ ◦ F ◦ E(x) = ±x2

1 + ψ(0, x̃).

Repeating this for ψ(0, x̃) in place ψ(x) and so on, the lemma follows. �

We can now complete the proof of Theorem 3.5. Each point of sptψ has a neigh-
bourhood where either ∇ψ 6= 0 or we can perform the change of variable by a
diffeomorhism G provided by Morse’s lemma. Covering the whole sptψ with a
finite number of such neighbourhoods and using a partition unity, we can write
I(λ) =

∑
j Ij(λ). If j corresponds to a non-critical point, |Ij(λ)| . λ−n/2 by Theo-

rem 3.4. For j corresponding to the non-degenerate critical points we have

Ij(λ) =

∫
eiλQj(x)ψ(Gj(x))JGj(x)dx,

where Qj and Gj are given by Morse’s lemma. For these |Ij(λ)| . λ−n/2 by the
special case considered above. �

3.3. Surface measures. We shall consider Fourier transforms of measures on smooth
hypersurfaces of Rn. If σ is the surface measure on such a surface S, we shall
consider measures µ of the type dµ = ζdσ where ζ is a smooth function with suf-
ficiently small compact support. Moreover, we shall assume that spt ζ ∩ S is a
graph of a smooth function ϕ over its tangent plane at a point p ∈ S. Without loss
of generality we assume that p = 0 and the tangent plane is Rn−1 = Rn−1 × {0}.
The reader can of course easily deduce various generalizations from this basic
case.

So let U ⊂ Rn−1 be bounded and open, 0 ∈ U , ϕ : U → R and ζ : Rn → R be
smooth functions, ζ with compact support, such that

S = {(x, ϕ(x)) : x ∈ U},
ϕ(0) = ∇ϕ(0) = 0,

spt ζ ⊂ {(x, t) : x ∈ U}.

Then the measure µ = ζσ is given by∫
gdµ =

∫
U

g(x, ϕ(x))ψ(x)dx

for g ∈ C0(Rn) where

ψ(x) = ζ(x, ϕ(x))
√

1 + |∇ϕ(x)|2.

Thus the Fourier transform of µ is, writing ξ = (ξ̃, ξn),

µ̂(ξ) =

∫
e−2πi(ξ̃·x+ξnϕ(x))ψ(x)dx.
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In order to obtain the optimal decay |ξ|(1−n)/2 as in the case of the sphere, we
need to make curvature assumptions. The Gaussian curvature of S at (x, ϕ(x)) is
the Hessian determinant hϕ(x), which is the the product of the principal curva-
tures, that is, the eigenvalues of Hϕ(x).

Theorem 3.7. With the above assumptions, if hϕ(x) 6= 0 for x ∈ U , then

|µ̂(ξ)| . |ξ|(1−n)/2 for ξ ∈ Rn.

Proof. Let ξ = λη with λ = |ξ| > 0 and |η| = 1, and

ϕη(x) = −2π(η1x1 + . . . ηn−1xn−1 + ηnϕ(x)), x ∈ U.
Then we need to show that

|µ̂(ξ)| = |
∫
eiλϕη(x)ψ(x)dx| .η λ(1−n)/2.

The implicit constant may a priori depend on η, since the integral is a continous
function of η and hence attains a maximum on Sn−1.

We have
∇ϕη(x) = −2π((η1, . . . , ηn−1) + ηn∇ϕ(x))

and
Hϕη(x) = −2πηnHϕ(x).

If ηn = 0, ∇ϕη(x) 6= 0 for all x ∈ U , and the required estimate follows from
Theorem 3.4. If ηn 6= 0, the assumption hϕ(x) 6= 0 for x ∈ U implies that hϕη(x) 6= 0
for x ∈ U , and the required estimate follows from Theorem 3.5.

�

4. RESTRICTION PROBLEMS

The presentation of this section is mainly based on [W]. This topic is also dis-
cussed in the books [G1], [So] and [S].

4.1. The problem. When does f̂ |Sn−1 make sense? If f ∈ L1(Rn) it obviously
does, since f̂ is a continuous function and as such defined uniquely at every
point. If f ∈ L2(Rn) it obviously doesn’t, since Fourier transform is an isome-
try of L2(Rn) onto itself and consequently f̂ is only defined almost everywhere
and nothing more can be said. In this section we shall see that for f ∈ Lp(Rn)

the restriction f̂ |Sn−1 does make sense also for some 1 < p < 2. This follows
immediately if we have an inequality

(4.1) ‖f̂‖Lq(Sn−1) ≤ Cp,q‖f‖p

valid for all f ∈ S. Then by denseness of S in Lp f̂ is defined as an Lq-function in
Sn−1 satisfying (4.1). That is, the linear operator f 7→ f̂ has a unique continuous
extension to Lp(Rn)→ Lq(Sn−1). The restriction problems asks for which p and q
(4.1) holds. It is open in in full generality, but we shall prove a sharp result when
q = 2.
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By duality, (4.1) is equivalent with

(4.2) ‖f̂‖Lp′ (Rn) ≤ Cp,q‖f‖Lq′ (Sn−1).

Here p′ and q′ are conjugate exponents of p and q and f̂ means the Fourier trans-
form of the measure fσn−1. In the case q = 2 this equivalence is contained in the
following more general proposition:

Proposition 4.1. Let µ ∈M(Rn) with compact support. The following are equiv-
alent for any 1 ≤ q ≤ ∞ and 0 < C <∞:

(1) ‖f̂µ‖Lq(Rn) ≤ C‖f‖L2(µ) for all f ∈ L2(µ).
(2) ‖f̂‖L2(µ) ≤ C‖f‖Lq′ (Rn) for all f ∈ S.
(3) ‖µ̂ ∗ f‖Lq(Rn) ≤ C2‖f‖Lq′ (Rn) for all f ∈ S.

The proof can be based on the following lemma, the proofs of the above state-
ments are left as exercises:

Lemma 4.2. Let µ ∈M(Rn) with compact support. Then for all f, g ∈ S,∫
f̂ ĝdµ =

∫
(µ̂ ∗ ḡ)f.

In order to solve the restriction problem it would be enough to prove the sharp
inequality (4.1) when p = 1 (or (4.2) when p′ = ∞). The rest would follow by in-
terpolation between 2 and 1 (or 2 and∞) using Theorem 4.4 below. The following
is called restriction conjecture:

Conjecture 4.3. ‖f̂‖Lq(Rn) ≤ Cp,q‖f‖L∞(Sn−1) for q > 2n/(n− 1).

This would be sharp; it suffices to take f = 1 and verify that σn−1 6∈ L2n/(n−1).
The latter follows from (2.8) and the asymptotic formula (2.7) for the Bessel func-
tions.

4.2. Tomas-Stein restriction theorem. We shall now prove the following restric-
tion theorem due to Tomas and Stein from the 1970’s:

Theorem 4.4. We have for f ∈ L2(Sn−1),

‖f̂‖Lq(Rn) ≤ Cq‖f‖L2(Sn−1)

for q ≥ (2n+ 2)/(n− 1). The lower bound (2n+ 2)/(n− 1) is the best possible.

Proof. We shall prove the inequality only for q > (2n + 2)/(n − 1). For the end
point, see [S]. By Proposition 4.1 the claim is equivalent to

(4.3) ‖σ̂n−1 ∗ f‖q ≤ C2
q ‖f‖q′ .

We have

(4.4) σn−1(B(x, r)) ≤ Crn−1 for x ∈ Rn, r > 0,

and by (2.8),

(4.5) |σ̂n−1(ξ)| ≤ C(1 + |ξ|)(1−n)/2 for ξ ∈ Rn.
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In fact, these are the only properties of σn−1 we are going to use. Thus the result
holds for the more general surfaces considered at the end of the previous section.

Let χ ∈ C∞(Rn) be such that χ(x) = 1, when |x| ≥ 1, and χ(x) = 0, when
|x| ≤ 1/2, and set

ϕ(x) = χ(2x)− χ(x).

Then
sptϕ ⊂ {x ∈ Rn : 1/4 ≤ |x| ≤ 1},

and
∞∑
j=0

ϕ(2−jx) = 1 when |x| ≥ 1.

Write

σ̂n−1 = K +
∞∑
j=0

Kj,

Kj(x) = ϕ(2−jx)σ̂n−1(x),

K(x) = (1−
∞∑
j=0

ϕ(2−jx))σ̂n−1(x).

Then K and Kj are C∞-functions with compact support, sptK ⊂ B(0, 1) (closed
ball), and sptK ⊂ {x : 2j−2 ≤ |x| ≤ 2j}. Young’s inequality for convolution (see
for example [G1]) states that

‖g ∗ h‖q ≤ ‖g‖p‖h‖r when 1 ≤ p, q, r ≤ ∞, 1

q
+ 1 =

1

p
+

1

r
.

Applying this with g = K,h = f, p = q/2 and r = q′ and using ‖K‖p ≤ ‖K‖∞ . 1,
we obtain

(4.6) ‖K ∗ f‖q ≤ C‖f‖q′ .

For j = 0, 1, . . . , we have by (2.8),

‖Kj‖∞ ≤ C2−j(n−1)/2.

Thus
|‖Kj ∗ f‖∞ ≤ C2−j(n−1)/2‖f‖1.

Define ψ, ψj ∈ S by

ψ = ϕ̂, ψj(x) = 2njψ(2jx).

By (1.19), as σ̂n−1 = F−1(σn−1), K̂j = ψj ∗ σn−1. Hence for N = 1, 2, . . . ,

|K̂j(ξ)| = |2nj
∫
ψ(2j(ξ − η))dσn−1η| ≤ CN2nj

∫
(1 + 2j|ξ − η|)−Ndσn−1η,
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since ψ ∈ S. Thus

|K̂j(ξ)| ≤

CN2nj(

∫
B(ξ,2−j)

(1 + 2j|ξ − η|)−Ndσn−1η +
∞∑
k=0

∫
B(ξ,2k+1−j)\B(ξ,2k−j)

(1 + 2j|ξ − η|)−Ndσn−1η ≤

CN2nj(σn−1(B(ξ, 2−j)) +
∞∑
k=0

2−Nkσn−1(B(ξ, 2k+1−j)) .

2nj2−j(n−1) +
∞∑
k=0

2−Nk2(k−j)(n−1))) . 2j

choosing N = n.
Since for f, g ∈ S,

‖g ∗ f‖2 = ‖ĝ ∗ f‖2 = ‖ĝf̂‖2 ≤ ‖ĝ‖∞‖f̂‖2,

we get
‖Kj ∗ f‖2 . 2j‖f‖2.

Above we had
‖Kj ∗ f‖∞ ≤ C2−j(n−1)/2‖f‖1.

Let θ ∈ (0, 1) be defined by θ/2 + (1 − θ)/∞ = 1/q, that is, θ = 2/q. Then by the
Riesz-Thorin interpolation theorem,

‖Kj ∗ f‖q . 2jθ2−j((n−1)/2)(1−θ)‖f‖q′ = 2j((n+1)/q−(n−1)/2)‖f‖q′ .
Since q > 2n+2

n−1
, (n+ 1)/q − (n− 1)/2 < 0, so

∞∑
k=0

‖Kj ∗ f‖q . ‖f‖q′ .

By (4.6) we have also,
‖K ∗ f‖q . ‖f‖q′ .

This and the representation σ̂n−1 = K +
∑∞

j=0Kj give the required inequality
(4.3).

Now we discuss the sharpness of the theorem by some examples. Let en =
(0, . . . , 0, 1) ∈ Rn and set for 0 < δ < 1,

Cδ = {x ∈ Sn−1 : 1− x · en ≤ δ2}.
Then Cδ is a spherical cap of radius roughly δ. Choose,

f = χCδ .

Then

(4.7) ‖f‖L2(Sn−1) = σn−1(Cδ)
1/2 ≈ δ(n−1)/2.

We estimate the Fourier transform of f in the ’dual rectangular box’ of Cδ;

Rδ = {ξ ∈ Rn : |ξj| ≤ c/δ for j = 1, . . . , n− 1, |ξn| ≤ c/δ2}.
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Here c is a small constant depending only on n and to be fixed later. For ξ ∈ Rn,

|f̂(ξ) = |
∫
Cδ

e−2πiξ·xdσn−1x|

= |
∫
Cδ

e−2πiξ·(x−en)dσn−1x| ≥
∫
Cδ

cos(2πξ · (x− en))dσn−1x.

We used only that |e−2πξ·en| = 1 and that the absolute value of a complex number
is at least its real part. Choosing c < n/6 one checks easily that

|2πξ · (x− en)| < π/3 for x ∈ Cδ, ξ ∈ Rδ,

whence
cos(2πξ · (x− en)) > 1/2 for x ∈ Cδ, ξ ∈ Rδ,

and so
|f̂(ξ)| ≥ σn−1(Cδ)/2for ξ ∈ Rδ.

Since Ln(Rδ) = 2ncnδ−n−1, we get

‖f̂‖q ≥ (σn−1(Cδ)/2)qLn(Rδ))
1/q ≈ δn−1−(n+1)/q.

Recalling (4.7) we see that in order to have

‖f̂‖q . ‖f‖L2(Sn−1) ≈ δ(n−1)/2

we must have δn−1−(n+1)/q . δ(n−1)/2 for small δ, which means n− 1− (n+ 1)/q ≥
(n− 1)/2, that is, q ≥ (2n+ 2)/(n− 1) as claimed. �

The dual inequality for Theorem 4.4 is

‖f̂‖L2(Sn−1) . ‖f‖p, 1 ≤ p ≤ 2n+ 2

n+ 3
,

which of course is also sharp. We shall illustrate the sharpness in the plane by a
slightly different example. Then 2n+2

n+3
= 6

5
. For 0 < δ < 1, consider the annulus

Aδ = {ξ ∈ R2 : 1− δ ≤ |ξ| ≤ 1 + δ}.

Our inequality can be shown to be equivalent with

(4.8)
∫
Aδ

|f̂(ξ)|2dξ . δ(

∫
R2

|f |p)2/p.

If c > 0 is small enough, the rectangle

Rδ = {ξ ∈ R2 : |ξ1 − 1| ≤ cδ, |ξ2| ≤ c
√
δ}

is contained in the annulus Aδ. Let g ∈ S(R) with ĝ(ξ) ≥ 1 when |ξ| ≤ c and
define f by

f(x1, x2) = g(δx1)e−2πix1g(
√
δx2)δ3/2,

which means that
f̂(ξ1, ξ2) = ĝ((ξ1 − x1)/δ)ĝ(ξ2/

√
δ).
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Thus f̂(ξ) ≥ 1 when ξ ∈ Rδ. Then, if (4.8) holds,∫
Rδ

|f̂ |2 ≤
∫
Aδ

|f̂ |2 . δ(

∫
R2

|f |p)2/p.

Plugging in the formulas for f and f̂ and changing variables, we derive from this

δ3/2 . δ(

∫ ∞
−∞
|g(δx1)|pdx1

∫ ∞
−∞
|g(
√
δx2)|pdx2δ

3p/2)2/p

δ(δ−1δ−1/2δ3p/2)2/p = δ4−3/p,

which yields the desired p ≤ 6/5.
[S] and [W] contain much more information on the restriction problem. In par-

ticular they present the powerful method based on stationary phase (in the spirit
of the previous section) and interpolation theorems. I shall not go into that, but
we shall return to the restriction topic and its connections to geometric Kakeya
problems in the next section.

4.3. Applications to PDE’s. One of the main motivations to restriction results is
their applications to partial differential equations. Here is a quick glance at that.

Consider the Schrödinger equation:
∂

∂t
u(x, t) = i∆xu(x, t), u(x, 0) = f(x), (x, t) ∈ Rn × R.

Its solution is given by

u(x, t) =

∫
Rn
e2πi(x·ξ−2πt|ξ|2)f̂(ξ)dξ.

Let
S = {(x, 2π|x|2) : x ∈ Rn}

and let σ be the surface measure on S. Defining g by

f̂(ξ) = g(ξ, 2π|ξ|2)
√

1 + (4π|ξ|)2,

where (4π|ξ|)2 = |∇ϕ(ξ)|2 with ϕ(ξ) = 2π|ξ|2, we have

u(x, t) = ĝσ(x, t)

and the restriction theorems give for certain values of p,

‖ĝσ‖Lp(Rn×R) . ‖g‖L2(σ).

But
‖g‖L2(σ) ≈ ‖f̂‖L2(Rn) = ‖f‖L2(Rn),

so
‖u‖Lp(Rn×R) . ‖f‖L2(Rn).

This method with variations applies to many other equations. For the wave
equation

∂2

∂t2
u(x, t) = ∆xu(x, t), u(x, 0) = 0,

∂

∂t
u(x, 0) = f(x), (x, t) ∈ Rn × R
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there is a similar connection with the cone {(x, t) : |x| = t} and one needs restric-
tion theorems for surfaces with 0 Gaussian curvature.

5. KAKEYA PROBLEMS

The main reference for this section is [W], but Stein also discusses this topic in
[S].

5.1. Besicovitch sets. We say that a compact set in Rn is a Besicovitch set, or a
Kakeya set, if it has zero Lebesgue measure and it contains a line segment of unit
length in every direction. It is not clear that such sets exist but they do in every
Rn, n ≥ 2. Besicovitch was the first to construct such a set in 1919. In doing this he
also solved a problem of Kakeya: in how small, in terms of area, plane domain can
a unit segment be turned around continuously. The answer is: in arbitrarily small.
Such constructions can be found in [F], [Gu], [S] and [W]. Fefferman was the first
to use these constructions to problems in Fourier transform in 1971, for the ball
multiplier problem. We shall return to this later. In this section we shall discuss
relations between Besicovitch sets and restriction problems. The pioneering work
for that is Bourgain’s paper [B].

How big must Besicovitch sets be? The conjecture, usually called Kakeya conjec-
ture, is

Conjecture 5.1. Every Besicovitch set in Rn has Hausdorff dimension n.

This is true for n = 2, and we shall prove it, and it is open for n ≥ 3. The
relation to restriction problems is:

Restriction conjecture 4.3 implies Kakeya conjecture.
We shall prove also this.

5.2. Kakeya maximal function. It is natural to approach these problems via a
related maximal function, which also will provide a link between the two con-
jectures. For a ∈ Rn, e ∈ Sn−1 and δ > 0, define the tube T δe (a) with center a,
direction e, length 1 and radius δ:

T δe (a) = {x ∈ Rn : |(x− a) · e| ≤ 1/2, |x− a− ((x− a) · e)e| ≤ δ}.

Definition 5.2. The Kakeya maximal function with width δ of f ∈ L1
loc(Rn) is the

function
f ∗δ : Sn−1 → [0,∞],

f ∗δ (e) = sup
a∈Rn

1

Ln(T δe (a))

∫
T δe (a)

|f |dLn.

We have the trivial proposition:

Proposition 5.3. For all f ∈ L1
loc(Rn),

‖f ∗δ ‖∞ ≤ ‖f‖∞ and ‖f ∗δ ‖∞ . δ1−n‖f‖1.
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If n ≥ 2, as we shall now always assume, and if p <∞, there can be no inequal-
ity

‖f ∗δ ‖Lq(Sn−1) ≤ C‖f‖p for all f ∈ Lp(Rn)

with C independent of δ. This follows from the existence of Besicovitch sets: let
B ⊂ Rn be such a compact set (with Ln(B) = 0) and let

f = χBδ , Bδ = {x ∈ Rn : dist(x,B) ≤ δ}.

Then f ∗δ (e) = 1 for all e ∈ Sn−1, so ‖f ∗δ ‖Lq(Sn−1) ≈ 1 but ‖f‖p = Ln(Bδ)
1/p → 0 as

δ → 0. Consequently we look for inequalities like:

(5.1) ‖f ∗δ ‖Lp(Sn−1) ≤ Cεδ
−ε‖f‖p for all ε > 0, f ∈ Lp(Rn).

Even this cannot hold if p < n: let f = χB(0,δ). Since B(0, δ) ⊂ T δe (0), we have for
all e ∈ Sn−1,

f ∗δ (e) =
Ln(B(0, δ))

Ln(T δe (0))
& δ.

But
‖f‖p = Ln(B(0, δ))1/p ≈ δn/p,

and δ >> δn/p for small δ if p < n. Kakeya maximal conjecture wishes for the next
best thing:

Conjecture 5.4. (5.1) holds if p = n, that is,

‖f ∗δ ‖Ln(Sn−1) ≤ Cεδ
−ε‖f‖n for all ε > 0, f ∈ Ln(Rn).

We shall see that this holds in R2 even with a logarithmic factor in place of
Cεδ

−ε. In Rn, n ≥ 3, the question is open. We shall first prove a connection to the
dimension of Besicovitch sets.

Theorem 5.5. If (5.1) holds for some p, 1 ≤ p <∞, then the Hausdorff dimension
of every Besicovitch set in Rn is n. In particular, Conjecture 5.4 implies Kakeya
conjecture.

Proof. Let B ⊂ Rn be a Besicovitch set. Let 0 < α < n and let Bj = B(xj, rj), j =
1, 2, . . . , be balls such that rj ≤ 1/100 and B ⊂ ∪jBj . It suffices to show that∑

j r
α
j & 1.

For e ∈ Sn−1 let Ie ⊂ B be a unit segment parallel to e. For k = 1, 2, . . . , set

Jk = {j : 2−k ≤ rj < 21−k},

and

Sk = {e ∈ Sn−1 : H1(Ie ∩ ∪j∈JkBj) ≥
1

100k2
}.

HereH1 is the one-dimensional Hausdorff measure (length measure). Since
∑

k
1

100k2
<

1 and ∑
k

H1(Ie ∩ ∪j∈JkBj) ≥ H1(Ie) ≥ 1,
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we have ⋃
k

Sk = Sn−1;

if there were some e ∈ Sn−1 \
⋃
k Sk, we would have H1(Ie ∩ ∪j∈JkBj) <

1
100k2

for
all k, and then ∑

k

H1(Ie ∩ ∪j∈JkBj) <
∑
k

1

100k2
< 1,

which is impossible.
Let

f = χFk with Fk = ∪j∈JkB(xj, 10rj).

If e ∈ Sk, then, letting ae be the mid-point of Ie,

Ln(T 2−k

e (ae) ∩ Fk) ≥
1

100k2
Ln(T 2−k

e (ae)),

whence

‖f ∗2−k‖p &
1

k2
σn−1(Sk)

1/p.

The assumption (5.1) gives

‖f ∗2−k‖p ≤ Cε2
kε‖f‖p ≤ Cε2

kε(#Jk2
(1−k)n)1/p.

Combining these two inequalities,

σn−1(Sk) .ε 2kεpk2p2−kn#Jk .ε 2−k(n−2εp)#Jk,

and finally ∑
j

rn−2εp
j &

∑
k

#Jk2
−k(n−2εp) &

∑
k

σn−1(Sk) & 1.

Choosing ε such that n− 2pε > α we get∑
j

rαj & 1

as required.
�

Remark 5.6. An obvious modification of the above proof gives that if

‖f ∗δ ‖Lp(Sn−1) ≤ Cβδ
−β‖f‖p for allf ∈ Lp(Rn),

then the Hausdorff dimension of every Besicovitch set in Rn is at least n− pβ.

We shall now prove a fairly sharp estimate in the plane:

Theorem 5.7. For all δ > 0 and f ∈ L2(R2),

‖f ∗δ ‖L2(S1) ≤ C
√

log(1/δ)‖f‖L2(R2),

with C independent of δ and f .
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Proof. We may assume that f is non-negative and has compact support. Changing
variable and using the symmetricity of T δe (0) we have

f ∗δ (e) = sup
a∈R2

1

L2(T δe (a))

∫
T δe (a)

fdL2

= sup
a∈R2

1

2δ

∫
T δe (0)

f(a− x)dL2x = sup
a∈R2

%eδ ∗ f(a),

where
%eδ =

1

2δ
χT δe (0).

Let ϕ ∈ S(R) be such that spt ϕ̂ ⊂ [−1, 1], ϕ ≥ 0 and ϕ(x) ≥ 1 when |x| ≤ 1 (check
that such a ϕ exists as an exercise if you havn’t met before). Define

ψ(x) = ϕ(x1)
1

δ
ϕ(x2/δ), x = (x1, x2) ∈ R2.

Then ψ̂(ξ1, ξ2) = ϕ̂(ξ1)ϕ̂(δξ2) and so

(5.2) spt ψ̂ ⊂ [−1, 1]× [−1/δ, 1/δ].

Since ϕ(x1) ≥ 1 and ϕ(x2/δ) ≥ 1 when |x1| ≤ 1 and |x2| ≤ δ, we have %e1δ ≤ ψ,
with e1 = (1, 0), and so

(5.3) f ∗δ (e1) ≤ sup
a∈R2

ψ ∗ f(a).

For e ∈ S1, let ge : R2 → R2 be the rotation, ge(x) = (e · x, e⊥ · x), where e · e⊥ = 0.
Then ge(x) ∈ T δe1(0) if and only if x ∈ T δe (0). Hence defining ψe = ψ ◦ ge, we get
from (5.3)

f ∗δ (e) ≤ sup
a∈R2

ψe ∗ f(a).

Using the fast decay of ψe ∗ f and Schwartz’s inequality, this leads to

f ∗δ (e) ≤ ‖ψe ∗ f‖∞ ≤ ‖ψ̂e ∗ f‖1 =

∫
|ψ̂e||f̂ |

≤ (

∫
|ψ̂e(ξ)||f̂(ξ)|2(1 + |ξ|)dξ)1/2(

∫
|ψ̂e(ξ)|
1 + |ξ|

dξ)1/2.

Since ψ̂e(ξ) = ψ̂ ◦ ge(ξ) = ψ̂(ge(ξ)), we get from (5.2)

spt ψ̂e ⊂ Re := g−1
e ([−1, 1]× [−1/δ, 1/δ]),

and so ∫
|ψ̂e(ξ)|
1 + |ξ|

dξ .
∫
Re

1

1 + |ξ|
dξ ≈

∫ 1/δ

−1/δ

1

1 + t
dt ≈ log(

1

δ
).

Thus

‖f ∗δ ‖2
L(S1) . log(

1

δ
)

∫
S1

∫
R2

|ψ̂e(ξ)||f̂(ξ)|2(1 + |ξ|)dξdσ1e

= log(
1

δ
)

∫
R2

(

∫
S1

|ψ̂e(ξ)|dσ1e)|f̂(ξ)|2(1 + |ξ|)dξ.
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Using again that spt ψ̂e ⊂ Re we get for all ξ ∈ R2,

σ1({e ∈ S1 : ψ̂e(ξ) 6= 0} ≤ σ1({e ∈ S1 : ξ ∈ Re} .
1

1 + |ξ|
.

The last inequality is a simple geometric fact. Consequently,∫
|ψ̂e(ξ)|dσ1e .

1

1 + |ξ|
and

‖f ∗δ ‖2
L(S1) . log(

1

δ
)

∫
R2

| 1

1 + |ξ|
|f̂(ξ)|2(1 + |ξ|)dξ = log(

1

δ
)‖f‖2

2.

�

Remark 5.8. In Rn, n ≥ 3, a modification of the above proof gives that if

‖f ∗δ ‖L2(Sn−1) . δ(2−n)/2‖f‖2,

where the exponent (2− n)/2 is the best possible.

The above proof is due to Bourgain from 1991. Originally this (and many other
Kakeya-type things) was proved by Córdoba in 1977 by a geometric method with-
out using Fourier transform. See [W] for Córdoba’s proof.

Combining Theorems 5.5 and 5.7 we obtain

Corollary 5.9. All Besicovitch sets in R2 have Hausdorff dimension 2.

This corollary was first proved by Davies in 1971 using Marstrand’s projection
and line intersection theorems for Hausdorff dimension.

In the following lemma gives a discretized version of Kakeya type inequali-
ties. This lemma is also an essential ingredient in the above mentioned Córdoba’s
proof of Theorem 5.7.

Lemma 5.10. Let 1 < p <∞, p′ = p
p−1

, 0 < δ < 1 and 0 < Λ <∞. Suppose that

‖
m∑
k=1

tkχTk‖p′ ≤ Λ

whenever {e1, . . . , em} ⊂ Sn−1 is a maximal δ-separated subset of Sn−1, t1, . . . , tm
are positive numebrs with

δn−1

m∑
k=1

tp
′

k ≤ 1,

a1, . . . , am ∈ Rn and Tk = T δek(ak). Then there is positive number C depending
only on n such that

‖f ∗δ ‖Lp(Sn−1) ≤ CΛ‖f‖p for all f ∈ Lp(Rn).

By {e1, . . . , em} ⊂ Sn−1 being a maximal δ-separated subset of Sn−1 we mean of
course that |ej− ek| ≥ δ for j 6= k and for every e ∈ Sn−1 there is some k for which
|e− ek| < δ.
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Proof. Let {e1, . . . , em} ⊂ Sn−1 be a maximal δ-separated subset of Sn−1. If e ∈
Sn−1 ∩ B(ek, δ), then f ∗δ (e) ≤ Cf ∗δ (ek) with C depending only on n, because any
T δe (a) can be covered with boundedly many tubes T δek(aj). Hence

‖f ∗δ ‖
p
Lp(Sn−1) ≤

∑
k

∫
B(ek,δ)

f ∗pδ dσ
n−1

≤
∑
k

Cpf ∗δ (ek)
pσn−1(B(ek, δ)) .

∑
k

f ∗δ (ek)
pδn−1.

By the duality of lp and lp
′ , for any aj ≥ 0, j = 1, . . . ,m,

(
m∑
j=1

apj)
1/p = max{

m∑
j=1

ajbj : bj ≥ 0,
m∑
j=1

bp
′

j = 1}.

Applying this to ak = δ(n−1)/pf ∗δ (ek) we get

‖f ∗δ ‖Lp(Sn−1) . (
∑
k

(δ(n−1)/pf ∗δ (ek))
p)1/p

=
∑
k

δ(n−1)/pf ∗δ (ek)bk = δ(n−1)
∑
k

tkf
∗
δ (ek))

where
∑

k b
p′

k = 1, tk = δ(1−n)/p′bk, and so δn−1
∑

k t
p′

k = 1. Therefore

‖f ∗δ ‖Lp(Sn−1) . δ(n−1)
∑
k

tk
1

Ln(T δek(ak))

∫
T δek

(ak)

|f |dLn

for some ak ∈ Rn. Since Ln(T δek(ak)) ≈ δn−1, we obtain by Hölder’s inequality

‖f ∗δ ‖Lp(Sn−1) .
∑
k

tk

∫
T δek

(ak)

|f |dLn =

∫
(
∑
k

tkχT δek (ak))|f |dLn

‖
∑
k

tkχT δek (ak)‖p′‖f‖p ≤ Λ‖f‖p.

�

5.3. Restriction implies Kakeya. Next we prove that the restriction inequality

(5.4) ‖f̂‖Lq(Rn) ≤ Cq‖f‖Lq(Sn−1) for q > 2n/(n− 1).

implies the Kakeya maximal conjecture 5.4. It can be shown, see [B], that Restric-
tion conjecture 4.3 is equivalent with (5.4) (that is, ‖f‖Lq(Sn−1) can be replaced by
‖f‖∞ on the right hand side), so by Theorem 5.5 Restriction conjecture implies
Kakeya conjecture.

For the proof we need a probabilistic result called Khintchin’s inequality. It has
also many other applications in analysis, for example, one can prove the sharp-
ness of the Hausdorff-Young inequality using it. Let ωj, j = 1, 2, . . . , be indepen-
dent random variables on a probability space (Ω, P ) taking values ±1 with equal
probability 1/2. One can take for example Ω = {−1, 1}N, ωj((xk)) = xj , and P the
natural measure on Ω, the infinite product of the measures 1

2
(δ−1 + δ1). Denote by
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E(f) the expectation (P -integral) of the random variable f . The indepence of the
ωj’s implies that

E(ωjωk) = E(ωj)E(ωk) = 0 for j 6= k,

and that for any Borel function g : R→ R and any finite subset J of N, the random
variables g ◦ ωj, j ∈ J, are independent and

E(Πj∈Jg ◦ ωj) = Πj∈JE(g ◦ ωj).

Theorem 5.11. For any a1, . . . , aN ∈ C and 0 < p <∞,

E(|
N∑
j=1

ωjaj|p) ≈p (|
N∑
j=1

|aj|2)p/2.

Proof. We shall only prove this 1 < p < ∞, which is the only case we shall need.
If p = 2, the claim follows from independence as equality. Next we prove the
inequality ".". We may obviously assume that the aj’s are real. Let t > 0. Then
by the independence

E(et
∑
j ajωj) = ΠjE(etajωj) = ΠjE(

1

2
(etajωj + e−tajωj).

The elementary inequality 1
2
(ex + e−x) ≤ ex

2/2 implies that

E(et
∑
j ajωj) ≤ e(t2/2)

∑
j a

2
j .

This gives for all t > 0, λ > 0, by Chebychev’s inequality

P (
∑
j

ajωj ≥ λ) = P (et
∑
j ajωj ≥ eλt)

≤ e−λtE(et
∑
j ajωj) ≤ e−λt+(t2/2)

∑
j a

2
j .

Take t = λ∑
j a

2
j
. Then

P (
∑
j

ajωj ≥ λ) ≤ e
− λ2

2
∑
j a

2
j

and so

P (|
∑
j

ajωj| ≥ λ) ≤ 2e
− λ2

2
∑
j a

2
j .

Applying this and the formula (which follows from Fubini’s theorem)

E(|f |p) = p

∫ ∞
0

λp−1e
− λ2

2
∑
j a

2
j P (|f | ≥ λ)dλ,

we get by a change of variable

E(|
∑
j

ajωj|p) ≤ 2p

∫ ∞
0

λp−1e
− λ2

2
∑
j a

2
j dλ = c(p)(

∑
j

a2
j)
p/2,

which is the desired inequality.
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To prove the opposite inequality we use duality. Let q = p
p−1

. Then by the two
previous cases, p = 2 and ".", and by Hölder’s inequality,∑

j

|aj|2 = E(|
∑
j

ajωj|2) ≤ E(|
∑
j

ajωj|p)1/pE(|
∑
j

ajωj|q)1/q

. (
∑
j

|aj|2)1/2E(|
∑
j

ajωj|p)1/p

which yields
E(|
∑
j

ajωj|p)1/p & (
∑
j

|aj|2)1/2

and proves the theorem. �

Theorem 5.12. (5.4) implies Conjecture 5.4

Proof. Let {e1, . . . , em} ⊂ Sn−1 be a maximal δ-separated set. Then m ≈ δ1−n. Let
ε > 0 and 1 < p < n such that with p′ = p

p−1
, 0 < 2(n− 1− n/p′) < ε. This can be

done since n/p′ → n− 1 as p→ n. Let a1, . . . , am ∈ Rn and t1, . . . , tm > 0 with

δn−1

m∑
k=1

tp
′

k ≤ 1.

Let Tk = T δek(ak). We shall show that

(5.5) ‖
∑
k

tkχTk‖p′ ≤ C1(n)δ−ε.

By Lemma 5.10 this implies (with C = C(n))

‖f ∗δ ‖Lp(Sn−1) ≤ Cδ−ε‖f‖p for all f ∈ Lp(Rn).

Interpolating this with the trivial inequlity

‖f ∗δ ‖∞ ≤ ‖f‖∞
we shall get

‖f ∗δ ‖Ln(Sn−1) ≤ Cεδ
−ε‖f‖n for all f ∈ Lp(Rn)

as required. So we need to prove (5.5).
Let τk be the δ−2 dilation of Tk: τk is the cylinder with center δ−2ak, direction ek,

length δ−2 and cross-section radius δ−1. Let

Sk = {e ∈ Sn−1 : 1− e · ek ≤ C−2δ2}.
Then Sk is a spherical cap of radius ≈ C−1δ} and center ek. Here C is chosen big
enough to guarantee that the Sk’s are disjoint. Define fk by

fk = e2πiδ−2ak·xχSk(x).

Then ‖fk‖∞ = 1, spt fk ⊂ Sk and by the estimates we did with the example at the
end of the proof of Theorem 4.4 we see that, provided C is sufficiently large, but
still depending only on n,

f̂k(ξ) ≥ δn−1 for ξ ∈ τk.
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Fix sk ≥ 0, k = 1, . . . ,m, and for ω = (ω1, . . . , ωm) ∈ {−1, 1}m let

f(ω) =
m∑
k=1

ωkskfk.

We shall consider ωk’s as independent random variables taking values 1 and −1
with equal probablility, and we shall use Khintchin’s inequality.

Let 1 < q <∞. Since the functions fk have disjoint supports,

‖f(ω)‖qLq(Sn−1) =
m∑
k=1

‖skfk‖qLq(Sn−1) ≈
m∑
k=1

sqkδ
n−1.

By Fubini’s theorem and Khintchin’s inequality,

E(‖f̂(ω)‖qq) =

∫
E(|f̂(ω)(ξ)|q)dξ

≈
∫

(
m∑
k=1

s2
k|f̂k(ξ)|2)q/2dξ & δq(n−1)

∫
(
m∑
k=1

s2
kχτk(ξ))

q/2dξ,

since |f̂k| & δn−1χτk .
Let q > 2n

n−1
. Then by our assumption the restriction property (5.4) holds and

we get

‖f̂(ω)‖q . ‖f(ω)‖Lq(Sn−1).

Combining these three inequalities, we obtain

δq(n−1)

∫
(
m∑
k=1

s2
kχτk)

q/2 . δ(n−1)

m∑
k=1

sqk.

We had p and tk given in the beginning of the proof and we choose sk =
√
tk and

q = 2p′. Then q > 2n
n−1

as p < n, and δ(n−1)
∑m

k=1 s
q
k = δ(n−1)

∑m
k=1 t

p′

k ≤ 1. Thus

δ2p′(n−1)

∫
(
m∑
k=1

tkχτk)
p′ . 1.

Changing variable y = δ2x, τk goes to Tk and so

δ2p′(n−1)δ−2n

∫
(
m∑
k=1

tkχTk)
p′ . 1,

that is,

‖
m∑
k=1

tkχTk‖p′ . δ
2( n
p′−(n−1)

.

As 2( n
p′
− (n− 1)) > −ε, (5.5) follows. �

Corollary 5.13. (5.4) implies Kakeya conjecture (that all Besicovitch sets in Rn

have Hausdorff dimension n).
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6. STATIONARY PHASE AND RESTRICTION

This section is based on [S] and [W]. Sogge also has a lot on this topic in [So].
The presentation will be sketchy, we shall omit many details.

6.1. Stationary phase and L2-estimates. Recall that in Section 3 we investigated
the decay as λ→∞ of the integrals

I(λ) =

∫
eiλϕ(x)ψ(x)dx, λ > 0.

We found that they decay as λ−n/2 provided that the critical points of ϕ are non-
degenerate on the support of ψ. In this section we allow ϕ and ψ to depend also
on x, we denote them now by Φ and Ψ, and we look for Lp − Lq estimates for the
operators

(6.1) Tλf(ξ) =

∫
eiλΦ(x,ξ)Ψ(x, ξ)f(x)dx, λ > 0.

As in the case of surface measures, this leads to restriction theorems via local
parametrizations of the surfaces, but this time it will be fairly complicated. We
shall also see how this method can be used to prove the sharp Carleson-Sjölin
restriction theorem in plane.

Under the non-degeneracy of the Hessian we have a fairly simple L2-result:

Theorem 6.1. Suppose that Φ : R2n → R and Ψ : R2n → C are C∞-functions, Ψ
with compact support. If

(6.2) det(
∂2Φ(x, ξ)

∂xj∂ξk
) 6= 0 for (x, ξ) ∈ spt Ψ,

then the operators Tλ, satisfy

(6.3) ‖Tλf‖2 . λ−n/2‖f‖2 for all f ∈ L2(Rn), λ > 0.

Proof. We can write

‖Tλf‖2
2 =

∫ ∫
Kλ(ξ, ζ)f(ξ)f(ζ)dξdζ,

where

Kλ(ξ, ζ)) =

∫
eiλ(Φ(x,ξ)−Φ(x,ζ))Ψ(x, ξ)Ψ(x, ζ)dx.

By Taylor’s formula

∇x(Φ(x, ξ)− Φ(x, ζ)) = (
∂2Φ(x, ξ)

∂xj∂ξk
)(ξ − ζ) +O(|ξ − ζ|2).

Assuming that the spt Ψ is sufficiently small we have then that for some c > 0,

|∇x(Φ(x, ξ)− Φ(x, ζ))| ≥ c|ξ − ζ|
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when (x, ξ), (x, ζ) ∈ spt Ψ. We can reduce to small support for Ψ as before (in
Section 3) with finite coverings. Reducing the support of Ψ further if needed we
can assume that for some j = 1, . . . , n,

| ∂
∂xj

(Φ(x, ξ)− Φ(x, ζ))| ≥ c|ξ − ζ|

when (x, ξ), (x, ζ) ∈ spt Ψ. Then similar partial integrations as in Section 3 yield

|Kλ(ξ, ζ))| ≤ CN(1 + λ|ξ − ζ|)−N , N = 1, 2, . . . ,

for ξ, ζ ∈ Rn. Applying this with N = n+ 1 we find that∫
|Kλ(ξ, ζ))|dζ . λ−n for ξ ∈ Rn,∫
|Kλ(ξ, ζ))|dξ . λ−n for ζ ∈ Rn.

Defining

TKλf(ζ) =

∫
Kλ(ξ, ζ)f(ξ)dξ

we obtain form the previous inequalities and Schur’s test, which we discuss be-
low, that

‖Tλf‖2
2 =

∫
(TKλf)f̄ ≤ ‖TKλf‖2‖f‖2 . λ−n‖f‖2

2,

as required. �

Schur’s test is the following general and very useful boundedness criterion:

Theorem 6.2. Let (X,µ) and (Y, ν) be measure spaces and K : X ×Y → C a µ× ν
measurable function such that∫

|K(x, y))|dµx ≤ A for y ∈ Y

and ∫
|K(x, y))|dνy ≤ B for x ∈ X.

Define
TKf(x) =

∫
K(x, y)f(y)dνy, f ∈ L2(ν).

Then

(6.4) ‖TKf‖L2(µ) ≤
√
AB‖f‖L2(ν) for f ∈ L2(ν).

Proof. This, and also the corresponding Lp-inequality, follows from Riesz-Thorin
interpolation theorem, but here is an easy direct proof: We have the elementary
fact √

ab = min{1

2
(εa+ b/ε) : 0 < ε <∞}, a, b > 0.

(6.4) follows if we can prove that∫ ∫
|K(x, y)g(x)f(y)|dµxdνy ≤

√
AB
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whenever ‖g‖L2(µ) = 1 and ‖f‖L2(ν) = 1. To verify this we use Schwartz’s inequal-
ity and the above formula for

√
ab:∫ ∫

|K(x, y)g(x)f(y)|dµxdνy

≤ (

∫ ∫
|K(x, y)||f(y)|2dµxdνy

∫ ∫
|K(x, y)||g(x)|2dµxdνy)1/2

= min
ε>0

1

2
(ε

∫ ∫
|K(x, y)||f(y)|2dµxdνy +

1

ε

∫ ∫
|K(x, y)||g(x)|2dµxdνy)

≤ min
ε>0

1

2
(εA

∫
|f |2dν +

1

ε
B

∫
|g|2dµ) =

√
AB.

�

6.2. From stationary phase to restriction. Let us see now how stationary phase
can be applied to restriction problems. We are interested in inequalities

(6.5) ‖f̂‖Lq(S) . ‖f‖Lp(Rn) for f ∈ Lp(Rn).

Here S is a smooth surface in Rn. Assuming that S is parametrized with a smooth
compactly supported function ϕ (6.5) reduces again to inequalities like

(6.6) |
∫
|f̂(x, ϕ(x))|qψ(x)dx|1/q . |‖f‖Lp(Rn),

where ϕ and ψ are compactly supported C∞ functions Rn−1 with ψ ≥ 0, ϕ(0) =
0,∇ϕ(0) = 0 and hϕ(0) 6= 0. The Fourier transform of f is given by

f̂(x, ϕ(x)) =

∫
Rn
e−2πi(x·ξ̃+ϕ(x)ξn)f(ξ)dξ, ξ̃ = (ξ1, . . . , ξn−1).

Let η be a non-negative compactly supported C∞ function on Rn with η(0) = 1
and define

(6.7) Tλf(x) =

∫
eiλΦ(x,ξ)Ψ(x, ξ)f(ξ)dξ, λ > 0, x ∈ Rn−1,

where
Φ(x, ξ) = −2π(x · ξ̃ + ϕ(x)ξn),

Ψ(x, ξ) = ψ(x)η(ξ).

Suppose we could prove

(6.8) ‖Tλf‖Lq(Rn−1) . λ−n/p
′‖f‖Lp(Rn)

Applying this to fλ, fλ(ξ) = f(λξ), we get

(

∫
|
∫
eiλΦ(x,ξ)η(ξ)f(λξ)dξ|qψ(x)qdx)1/q . λ−n/p

′‖fλ‖p = λ−n/p−n/p
′‖f‖p = λ−n‖f‖p.

Change of variable ζ = λξ gives, since λΦ(x, ξ) = Φ(x, λξ),

(

∫
|
∫
eiΦ(x,ζ)η(ζ/λ)f(ζ)dζ|qψ(x)qdx)1/q . ‖f‖p.

When λ→ 0, η(ζ/λ)→ 1, and the last inequality gives (6.6).
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The inequality (6.8) can be proven for much more general phase functions than
Φ above, and it has applications to many problems in addition to restriction. The
natural and best possible range of exponents in the general case for n ≥ 3 is

1 ≤ p ≤ 2n+ 2

n+ 3
, q =

n− 1

n+ 1
p′.

It corresponds to the range to which Tomas-Stein restriction leads by interpola-
tion. For n = 2 the range can be extended to 1 ≤ p ≤ 4. The main part of the proof
of (6.8) is for q = 2, p = 2n+2

n+3
. The rest follows by interpolation between this and

the trivial case ‖Tλf‖∞ . ‖f‖1. We can write

‖Tλf‖2
L2(Rn−1) =

∫ ∫
Kλ(ξ, ζ)f(ξ)f(ζ)dξdζ,

where
Kλ(ξ, ζ) =

∫
Rn−1

eiλ(Φ(x,ξ)−Φ(x,ζ))Ψ(x, ξ)Ψ(x, ζ)dx.

Let
Uλg(ξ) =

∫
Kλ(ξ, ζ)g(ζ)dζ.

Then
‖Tλf‖2

L2(Rn−1) =

∫
(Uλf)f̄ .

So we need
‖Uλf‖Lp′ (Rn) . λ−2n/p′‖f‖Lp(Rn).

This can be obtained by fairly complicated real and complex interpolation tech-
niques. A gain from going from Tλ to Uλ is that we have now operator which acts
on functions in Rn to functions in Rn (not Rn−1 to Rn as for Tλ). The formal way
from Tλ to Uλ is that the adjoint T ∗λ of Tλ is

T ∗λf(ζ) =

∫
e−iλΦ(x,ξ)Ψ(x, ξ)f(x)dx,

so
Uλ = T ∗λTλ.

A serious problem with Uλ is still that the oscillating factor in its kernel Kλ

depends on the variables in Rn−1 and Rn and cannot have non-degeneracy corre-
sponding to the earlier conditions of non-vanishing Hessian determinant. Here
one needs to study the (n− 1)× n matrix

(
∂2Φ(x, ξ)

∂xj∂ξk
).

What helps is that in many situations it has maximal rank n − 1, and this is one
of the assumptions for a general theorem. This can be used by freezing one co-
ordinate ξj and using Fubini arguments or by adding to Φ an auxiliary function
Φ0(x, t), t ∈ R, which gives a non-zero Hessian determinant for Φ(x, ξ1, . . . , ξn−1)+
Φ0(x, ξn). Then results like Theorem 6.1 can be applied. The many missing details
can found in [S] and [So]. subsectionSharp results in the plane In this section we
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shall prove a sharp Lp−Lq-inequality for the operators Tλ in the two-dimensional
case. This will solve the restriction conjecture in the plane. These results are due
to Carleson and Sjölin from 1972.

First let us observe a corollary to Theorem 6.1: under the assumption (6.2), the
operators Tλ of (6.1) satisfy

(6.9) ‖Tλf‖p′ . λ−n/p
′‖f‖p for all f ∈ Lp(Rn), λ > 0, 1 ≤ p ≤ 2.

This follows readily interpolating (6.3) with the trivial case ‖Tλf‖∞ ≤ ‖f‖1.
We formulate and prove now in the plane a precise result for operators as in

(6.7). This kind of results were vaguely discussed before. The variable x will now
be a real number and ξ ∈ R2. We shall denote derivates with respect to x by ’ and
with respect to ξj with subscript ξj . So, for example, Φ′′ξj(x, ξ) = ∂3Φ(x,ξ)

∂2x∂ξj
.

Theorem 6.3. Suppose that Φ : R × R2 → R and Ψ : R × R2 → C are smooth
functions such that Ψ has compact support and

(6.10)
∣∣∣∣Φ′′ξ1(x, ξ) Φ′ξ1(x, ξ)
Φ′′ξ2(x, ξ) Φ′ξ2(x, ξ)

∣∣∣∣ 6= 0 for (x, ξ) ∈ spt Ψ.

Then the operators T ∗λ ,

T ∗λf(ξ) =

∫
R
eiλΦ(x,ξ)Ψ(x, ξ)f(x)dx, λ > 0, ξ ∈ R2,

satisfy

(6.11) ‖T ∗λf‖Lq(R2) . λ−2/q‖f‖Lp(R) for all f ∈ Lp(R), λ > 0, q = 3p′, 1 ≤ p < 4.

Remark 6.4. Observe that we we have formulated the theorem for the adjoint op-
erators of the operators Tλ,

Tλf(x) =

∫
R2

e−iλΦ(x,ξ)Ψ(x, ξ)f(ξ)dx, λ > 0, x ∈ R,

that we considered before. The theorem is equivalent with

‖Tλf‖Lq(R) . λ−2/p′‖f‖Lp for all f ∈ Lq(R2), λ > 0, 3q = p′, 1 ≤ p < 4/3.

Proof. I shall omit several technical details. They are only routine calculations,
except for the last step where we use an inequality for fractional integrals without
proving it. What will help is that we have now q > 4 = 2 · 2. This allows us to
work with

T ∗λf(ξ)2 =

∫
R2

eiλ(Φ(x,ξ)+Φ(y,ξ))Ψ(x, ξ)Ψ(y, ξ)f(x)f(y)dxdy, λ > 0, ξ ∈ R2.

We would like to apply Theorem 6.1 with the phase function Φ(x1, ξ) + Φ(x2, ξ),
((x1, x2), ξ) ∈ R2×R2, but the determinant det( ∂2

∂xj∂ξk
(Φ(x1, ξ) + Φ(x2, ξ)) vanishes
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for x1 = x2. Computing this determinant, doing a little algebra and applying
Taylor’s theorem (all quite elementary) one finds that
(6.12)

det(
∂2

∂xj∂ξk
(Φ(x1, ξ) + Φ(x2, ξ))) =

∣∣∣∣Φ′′ξ1(x1, ξ) Φ′ξ1(x1, ξ)
Φ′′ξ2(x1, ξ) Φ′ξ2(x1, ξ)

∣∣∣∣ (x2− x1) +O(|x1− x1|2).

Due to our assumption, we may as before suppose that Ψ has so small support
that

| det(
∂2

∂xj∂ξk
(Φ(x1, ξ) + Φ(x2, ξ))| ≥ c|x2 − x1|when (x1, ξ), (x2, ξ) ∈ spt Ψ.

Now we would like to make a change of variable in the x variable to get rid of
the factor |x2 − x1|. This we obtain with y = (x1 − x2, x1 · x2) =: g(x1, x2). The
Jacobian (the absolute value of the determinant) is |x2−x1| as we wanted. Notice
that g is only two to one in {x : x1 6= x2} but it is one to one in {x : x1 < x2} and in
{x : x2 < x1}. Moreover, g(x) = g(x′) if and only if x = x′ or x1 = x′2 and x2 = x′1,
as one checks by direct computation. Setting

Φ̃(y, ξ) = Φ(x1, ξ) + Φ(x2, ξ),

when y = g(x), we have the well defined function Φ̃. It is smooth because of the
symmetricity of Φ(x1) + Φ(x2, ξ) with respect to x1 and x2. Moreover,

det(
∂2

∂yj∂ξk
(Φ̃(y, ξ)) 6= 0

when |x1 − x2| is small. Now we have (2 in front comes from the two to one
property)

T ∗λf(ξ)2 = 2

∫
R2

eiλΦ̃(y,ξ)Ψ̃(y, ξ)F (y)dy, λ > 0, ξ ∈ R2,

where Ψ̃(y, ξ) = Ψ(x1, ξ)Ψ(x2, ξ) is smooth with compact support, and, when
y = g(x),

F (y) =
f(x1) · f(x2)

|x1 − x2|
.

So we have won by getting a non-vanishing determinant for Φ̃, but lost by getting
a singularity at the diagonal for F . Define r by 2r′ = q. Assuming, as we may,
that q <∞, we have then 1 < r < 2 and we can apply (6.9) getting∫

|T ∗λf |q =

∫
|(T ∗λf)2|r′ . λ−2(

∫
|F (y)|rdy)r

′/r.

Changing from y to x we have∫
|F (y)|rdy =

1

2

∫
|f(x1)f(x2)|r|x1 − x2|1−rdx1dx2.

To estimate the last integral we use the following Hardy-Littlewood-Sobolev in-
equality for functions of one variable, see, for example, [S], (31) in Chapter 8:∫

|g(x1)g(x2)||x1 − x2|−γdx1dx2 ≤ (

∫
|g|s)2/s,
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if 1− 1
s

= 1
s
− 1 + γ. We apply this with g = |f |r, γ = r − 1. Then∫

|T ∗λf |q . λ−2(

∫
|f |rsdy)2r′/(rs).

The choices of the parameters imply rs = p and 2r′/(rs) = q/p, and the restriction
1 < r < 2 is equivalent to 1 < p < 4. Thus the theorem follows. �

If ϕ is a local parametrization of a curve S and

Φ(x, ξ) = −2π(x · ξ1 + ϕ(x)ξ2)

as before in the applications to restriction, then the determinant in the assump-
tions of Theorem 6.3 ∣∣∣∣Φ′′ξ1(x, ξ) Φ′ξ1(x, ξ)

Φ′′ξ2(x, ξ) Φ′ξ2(x, ξ)

∣∣∣∣ = 4π2ϕ′′(x).

So the non-vanishing determinant condition means that the curve has non-zero
curvature. Recalling the argument ’(6.8) implies (6.5)’ and checking that the con-
ditions on exponents match we obtain from Theorem 6.3 (recall the formulation
in Remark 6.4):

Theorem 6.5. Let S be a smooth compact curve in R2 with non-vanishing curva-
ture. Then

(

∫
S

|f̂ |qdσ1)1/q . ‖f‖Lp(R2) for f ∈ Lp(R2), 3q = p′, 1 ≤ p < 4/3.

This means in particular that the restriction conjecture 4.3 is valid for the circle
S1.

7. FOURIER MULTIPLIERS

For the beginners there is a nice treatment of the multipliers in [D]. Fefferman’s
ball example is done in [Gu], [G2] and [S]. [G2], [S] and [So] contain a lot of
further material on multipliers.

7.1. Definition and examples. Let m ∈ L∞(Rn) be a bounded function. For any
function f in L2(Rn) we can define the following operator Tm using the Fourier
Transform

T̂mf = mf̂, that is, Tmf = (mf̂)∨

Using Parseval’s theorem we get,

‖Tmf‖2 =
∥∥∥mf̂∥∥∥

2
≤ ‖m‖∞

∥∥∥f̂∥∥∥
2

= ‖m‖∞ ‖f‖2 ,

and therefore Tm is a bounded linear operator from L2 to L2 with norm bounded
by ‖m‖∞ . In fact, this norm is exactly ‖m‖∞ (exercise).

The function m ∈ L∞(Rn) is said to be an Lp-multiplier, 1 < p < ∞, when the
operator can be extended to Lp and this extension is bounded from Lp to Lp.

For a measurable set A ⊂ Rn we denote

TA = TχA .
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Let us look at some examples:

Example 7.1. Let m be the sign function in R; m(x) = −1 for x < 0 and m(x) = 1
for x ≥ 1. Then

Ĥf = −imf̂
where H is the Hilbert transform. So Tm = H and m is an Lp-multiplier for all
1 < p < ∞ by the well-known (but highly non-trivial) results on the Hilbert
transform.

Example 7.2. Let m = ma,b be the characteristic function of the interval [a, b] and
Sa,b = Tma,b the corresponding multiplier operator. This reduces easily to the
previous example; in fact, see [D],

Sa,b =
i

2
(Ma ◦H ◦M−a −Mb ◦H ◦M−b),

where Ma is the multiplication operator: Maf(x) = e2πiaxf(x). It follows that
χ[a,b] is an Lp-multiplier for all 1 < p < ∞. Moreover, its norm is ≤ Cp with Cp
depending only p. For a = −R, b = R, this gives

f(x) = lim
R→∞

∫ R

−R
e2πixξf̂(ξ)dξ as R→∞ in Lp sense.

To prove this, check first that the formula is valid for functions in S and use the
denseness of S.

Example 7.3. As in the previous example, do we also have in Rn, n ≥ 2,

f(x) = lim
R→∞

∫
B(0,R)

e2πix·ξf̂(ξ)dξ as R→∞ in Lp sense?

For p = 2 we do have. For p 6= 2 we don’t have. This follows from the fact that
in Rn χB(0,1) is an Lp-multiplier if and only if p = 2. The proof of this will be the
main content of this section.

Observe that the operator norms of TB(0,1) and TB(x,r) for any x ∈ Rn, r > 0, are
equal, check this as an exercise.

Example 7.4. Let P ⊂ Rn be a polyhedral domain. Then χP is an Lp-multiplier
for all 1 < p < ∞. By definition a polyhedral domain is an intersection of
finitely many half-spaces. Thus the claim reduces to showing that the charac-
teristic function of a half-space is an Lp-multiplier. This in turn reduces to the
one-dimensional examples above. The details are left as an exercise.

7.2. Fefferman’s example. The following result is due to C. Fefferman from 1971,
[Fe]:

Theorem 7.5. The characteristic function of the the unit ball B(0, 1) in Rn, n ≥ 2,
is an Lp-multiplier if and only if p = 2.

Proof. We shall first consider n = 2 and comment on the general case later. The
proof is based on Kakeya type constructions. We need a quantitative lemma,
Lemma 7.6 on a construction which leads to Besicovitch sets. This is based on the
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so-called Perron tree. We omit the proof, which can be found in [Gu], [G2] and
[S].

For a rectangle R we denote by R̃ the rectangle obtained by adding translated
copies of R and attached along the two shorter sides of R. For example,
R̃ = [x1 − l1, x1 + 2l1]× [x2, x2 + l2] if R = [x1, x1 + l1]× [x2, x2 + l2], l1 < l2, but we
shall consider rectangles in arbitrary directions.

Lemma 7.6. Let 0 < δ < 1
2
. Then there is a measurable set E ⊂ R2 and a finite

collection of pairwise disjoint rectangles {Rk}with the following properties:

(i) 1
2
≤ L2(E) ≤ 3

2
,

(ii) L2(E ∩ R̃k) ≥ 1
12
L2(Rk),

(iii) L2(E) ≤ δ
∑
L2(Rk).

First we establish the following general inequality in the spirit thatLp-boundedness
for scalar valued operator implies Lp-boundedness for vector valued operators
with same norm:

Lemma 7.7. Let T : Lp(Rn) → Lp(Rn), 1 < p < ∞, be any bounded linear op-
erator that is ‖Tf‖p ≤ Cp ‖f‖p for all f ∈ Lp(Rn). Then for every sequence of
functions {fj}kj=1 in Lp(Rn) we have,∥∥∥∥∥∥

(
k∑
j=1

|Tfj|2
) 1

2

∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥
(

k∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
p

.

Proof. Denote f = (f1, . . . , fk) and Tf = (Tf1, . . . , T fk). For w ∈ Sk−1 we have by
the linearity of T ,

(7.1)
∫
Rn
|w · Tf |p =

∫
Rn
|T (w · f)|p ≤ Cp

p

∫
Rn
|w · f |p .

For any y ∈ Rk we have,

(7.2)
∫
Sk−1

|w · y|p dσk−1w = c |y|p

where c is independent of y and |y| denotes of course the Euclidean norm on Rk.
This follows from the fact that the surface measure σk−1 is rotation invariant, i.e.,
σ(g(A)) = σ(A) for all A ⊂ Sk−1 and g ∈ O(k).

Using Fubini’s theorem, (7.2) and (7.1) we get

c

∫
Rn
|Tf |p =

∫ ∫
Rn
|w · Tf |p dσn−1w ≤ Cp

p

∫ ∫
Rn
|w · f |p dσn−1w = Cp

pc

∫
Rn
|f |p .

This is the required inequality and the proof of the lemma is finished. �

The next lemma associates the multiplier operator of the unit disc to those of
the half-spaces:
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Lemma 7.8. Assume that the multiplier operator T = TB of the characteristic
function of the unit ball B = B(0, 1) ⊂ Rn satisfies ‖Tf‖p ≤ Cp ‖f‖p for some
p > 2. Let {vj}kj=1 be a finite sequence of unit vectors in Rn. Let Hj be the half-
space,

Hj = {x ∈ Rn : vj · x ≥ 0},
and Tj = THj . Then for any sequence {fj}kj=1 in Lp(Rn) we have,∥∥∥∥∥∥

(
k∑
j=1

|Tjfj|2
) 1

2

∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥
(

k∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
p

.

Proof. We assume that fj ∈ S , the general case follows by simple approximation.
Let Br

j be the ball of center rvj and radius r > 0. The characteristic functions χBrj
convergence pointwise to χHj as r → ∞. Let T rj = (χBrj f̂)∨. Then also for f ∈ S ,
T rj f converges to Tjf as r →∞ both pointwise and in Lp(Rn). Thus it will suffice
to prove that for all r > 0,

(7.3)

∥∥∥∥∥∥
(

k∑
j=1

∣∣T rj fj∣∣2
) 1

2

∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥
(

k∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
p

.

Observe that,
T rj f(x) = e2πirvj ·xTr(e

−2πirvj ·ξf)(x),

where Tr is the multiplier operator of the disc B(0, r). Set gj(ξ) = e−2πirvj ·ξfj(ξ).
We obtain ∥∥∥∥∥∥

(
k∑
j=1

∣∣T rj fj∣∣2
) 1

2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(

k∑
j=1

|Tr(gj)|2
) 1

2

∥∥∥∥∥∥
p

.

Recall from Example 7.3 that the operator norms of Tr and T are equal. Therefore
Lemma 7.7 yields∥∥∥∥∥∥
(

k∑
j=1

∣∣T rj fj∣∣2
) 1

2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(

k∑
j=1

|Tr(gj)|2
) 1

2

∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥
(

k∑
j=1

|gj|2
) 1

2

∥∥∥∥∥∥
p

= Cp

∥∥∥∥∥∥
(

k∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
p

,

so that (7.3) holds and the proof of the lemma is finished. �

The next lemma tells us how the operators Tj of the previous lemma act on
some rectangles. The notation R̃ was introduced before Lemma 7.6.

Lemma 7.9. Let R ⊂ R2 be a rectangle whose longer sides are in the direction
v ∈ S1 and let H be the half-plane

H = {x ∈ R2 : v · x ≥ 0}.
Then

|TH(χR)| ≥ 1

10
χR̃.
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Proof. Suppose first that v = (1, 0). Denote by T+ the multiplier for the half line
(0,∞),

T+f(x) =

∫ ∞
0

f̂(ξ)e2πixξdξ for f ∈ L2(R).

If f ∈ L2(R), Plancherel’s theorem gives

T+f(x) = lim
ε→0

∫ ∞
0

f̂(ξ)e2πi(x+iε)ξdξ

in L2. Taking f = χ(−1/2,1/2) we have for ε > 0,∫ ∞
0

f̂(ξ)e2πi(x+iε)ξdξ =

∫ ∞
−∞

(∫ ∞
0

e−2πiyξe2πi(x+iε)ξdξ

)
f(y)dy

=
1

2πi

∫ 1/2

−1/2

1

(y − x− iε)
dy.

by direct elementary estimates the absolute value of the last integral is bounded
below for |x| ≤ 1/2 by some absolute constant. This is enough for us, but one can
also check that 1/10 is OK. It follows that

(7.4)
∣∣T+f(x)

∣∣ ≥ 1

10
for |x| ≤ 3

2
.

If f1, f2 ∈ S we have for F (x1, x2) = f1(x1)f2(x2) by Fubini’s theorem (recall that
v = (1, 0)),

THF (x1, x2) =

∫
H

F̂ (ξ)e2πix·ξdξ =

=

∫ ∞
−∞

∫ ∞
0

f̂1(ξ1)f̂2(ξ2)e2πx1ξ1e2πix2ξ2dξ1dξ2

=

(∫ ∞
0

f̂1(ξ1)e2πx1ξ1dξ1

)∫ ∞
−∞

f̂2(ξ2)e2πix2ξ2dξ2

= T+f1(x1)f2(x2).

Next letR be the rectangle with sides parallel to the axes that is given by a product(
−1

2
, 1

2

)
× (−a, a) with a <

1

2
. Then,

χR(x1, x2) = χ(− 1
2
, 1
2

)(x1)χ(−a,a)(x2).

Hence by approximation and the above formula,

THχR(x1, x2) = T+χ(− 1
2
, 1
2

)(x1) · χ(−a,a)(x2)

and by (7.9) we get that,

|THχR| ≥
1

10
χR̃

The same inequality holds for any rectangle Rj with sides parallel to the coordi-
nate axis, either by repeating the proof or changing variables. For an arbitrary
rectangle we can rotate and translate to complete the proof. �
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Let T = TB be the multiplier operator of the unit disc B = B(0, 1) ⊂ R2, i.e., for
f ∈ L2(R2)

(Tf)∧ = χB f̂ .

If f, g ∈ S we have by Parseval’s theorem,∫
Tfḡ =

∫
(Tf)∧ĝ =

∫
χB f̂ ĝ =

∫
f̂χB ĝ =

∫
f̂(Tg)∧ =

∫
fTg.

Suppose that T is an Lp multiplier with norm Cp for some p 6= 2, and p′ =
p

p− 1
.

By duality and Hölder’s inequality,

‖Tf‖p′ = sup
‖g‖p≤1,g∈S

∣∣∣∣∫ Tfḡ

∣∣∣∣ = sup
‖g‖p≤1,g∈S

∣∣∣∣∫ fTg

∣∣∣∣
≤ sup
‖g‖p≤1,g∈S

‖f‖p′ ‖Tg‖p ≤ sup
‖g‖p≤1,g∈S

‖f‖p′ Cp ‖g‖p ≤ Cp ‖f‖p′ .

Hence T is also an Lp
′-multiplier. Therefore without loss of generality we can

assume that p > 2.
Let E and Rj be as in Lemma 7.6, fj = χRj , let vj ∈ S1 be the directions of the

longer sides ofRj and let Tj be the half-plane multiplier related to vj as in Lemma
7.8.

First notice that by Lemmas 7.3 and 7.6 we have with c0 = 1/100,∫
E

(
k∑
j=1

|Tjfj|2
)

=
k∑
j=1

∫
E

|Tjfj|2 ≥
k∑
j=1

c0

∫
E

χR̃j

= c0

k∑
j=1

L2(E ∩ R̃j) ≥ c2
0

k∑
j=1

L2(Rj).

By Hölders inequality for the exponents p
2

and (p
2
)′ = p

p−2
and Lemma 7.8,

∫
E

(
k∑
j=1

|Tjfj|2
)
≤

∫
R2

(
k∑
j=1

|Tjfj|2
) p

2


2
p

L2(E)
p−2

p

=

∥∥∥∥∥∥
(

k∑
j=1

|Tjfj|2
) 1

2

∥∥∥∥∥∥
2

p

L2(E)
p−2

p ≤ Cp

∥∥∥∥∥∥
(

k∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
2

p

L2(E)
p−2

p

= CpL2(E)
p−2

p

(
k∑
j=1

L2(Rj)

) 2
p

The last equality follows because the rectangles Rj are disjoint. Combining the
previous estimates,

c2
0

k∑
j=1

L2(Rj) ≤ c2
0CpL2(E)

p−2

p (
k∑
j=1

L2(Rj))
2
p ≤ c2

0Cpδ
p−2

p

k∑
j=1

L2(Rj),
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which is a contradiction for sufficiently small δ.
This completes the proof for n = 2. For n > 2 one can proceed in the same way

and at the end use for the the functions fj ,

fj(x1, . . . , xn) = χRj(x1, x2)f(x3, . . . , xn),

where f is a fixed function on Rn−2. One can also prove and use a Fubini-type
result stating that if m is an Lp-multiplier on Rm+n, then for almost every ξ ∈ Rm,
η 7→ m(ξ, η) is an Lp-multiplier with norm bounded by that of m. For this see
[G1], Theorem 2.5.16. �

7.3. Bochner-Riesz multipliers. I don’t give here proofs. For them and further
results and comments, see [D], [G2], [S] and [So].

We know now that we don’t have the convergence asked for in Example 7.3
if n ≥ 2 and p 6= 2. But what about some modified type of convergence, for
example,

f(x) = lim
R→∞

∫
B(0,R)

(1− |ξ|
R

)e2πix·ξf̂(ξ)dξ as R→∞ in Lp sense?

This is analogous to some classical facts for Fourier series: it is easier to get the
convergence for instance in Cesàro sense, leading to the Fejér kernel, than for the
usual Fourier partial sums, see, e.g., [D]. So we are requesting about results for
the multiplier (1− |ξ|)+, or equivalently for m(ξ) = (1− |ξ|2)+, instead of the ball
multiplier. Here a+ = max{a, 0}. Raising m to small power δ > 0 we get closer to
the characteristic function of the unit ball.

Definition 7.10. The Bochner-Riesz multiplier with parameter δ > 0 is defined by

mδ(ξ) = (1− |ξ|2)δ+.

The corresponding multiplier operator is Sδ;

Sδf = (mδf̂)∨.

For f ∈ S we have
Sδf = Kδ ∗ f.

The kernel Kδ can be computed from the formula for the Fourier transform of a
radial function with the aid of some Bessel function identities. It is

Kδ(x) = c(δ)|x|−n/2−δJn/2+δ(2π|x|),
see [D] or [S]. From the properties of the Bessel functions it follows that Kδ is
bounded and its aymptotic behaviour at infinity is,

Kδ(x) ≈ E(x)|x|−n/2−δ−1/2,

where E is a bounded linear combination of trigonometric functions. Conse-
quently, Kδ ∈ Lp(Rn) if and only if p > 2n

n+1+2δ
This implies that mδ is not an

Lp-multiplier if p ≤ 2n
n+1+2δ

. By duality, neither is it when p ≥ 2n
n−1−2δ

. The Bochner-
Riesz conjecture believes that these are the only restrictions:



42 PERTTI MATTILA

Conjecture 7.11. mδ is an Lp-multiplier if and only if
2n

n+ 1 + 2δ
< p <

2n

n− 1− 2δ
.

Notice that the above condition is equivalent to

|1
p
− 1

2
| < 2δ + 1

2n
.

Again, this conjecture is open for n ≥ 3 and true for n = 2. In R2 it is very close
to the restriction conjecture and was also proved by Carleson and Sjölin; Theo-
rem 6.3 which gave the restriction conjecture gives also this, see [S]. Tao proved
in 1999 in [Tao] that the Bochner-Riesz conjecture implies restriction conjecture,
there are also some partial results in the opposite direction, see Tao’s paper.

The following theorem is rather close to the best that is known:

Theorem 7.12. mδ is an Lp-multiplier if
2n

n+ 1 + 2δ
< p <

2n

n− 1− 2δ
,

and
δ >

n− 1

2(n+ 1)
.

The proof is easy if δ > n−1
2

, because then Kδ ∈ L1. It is simpler than in the full
range for

|1
p
− 1

2
| < δ

n− 1
,

see [D] for that. For the full range one can use restriction Tomas-Stein restriction
theorem. Here is a skecth of the proof following a lecture of Ana Vargas:

We can write

mδ(ξ) =
∞∑
k=0

2−kδϕk(|ξ|),

where the functions ϕk are smooth, sptϕk ⊂ (1 − 21−k, 1 − 2−2−k) for k ≥ 1, and
|ϕ(j)
k (t)| ≤ Cj2

kj for t ∈ R, j = 0, 1, 2, . . . . Let Tk be the multiplier operator

T̂kf(ξ) = ϕk(|ξ|)f̂(ξ).

Then

Sδ =
∞∑
k=0

2−kδTk.

The kernel of Tk (the Fourier transform of ϕk(|ξ|)) decays very fast for |x| > 2k,
which implies that for the boundedness of Tk it suffices to consider functions f
supported on B(0, 2k). For such an f ,

Tkf(x) =

∫ 1−2−2−k

1−21−k

∫
Sn−1

e2πirx·ξf̂(rξ)ϕk(r)dσ
n−1ξrn−1dr.
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Hence by Minkowski’s integral inequality,

‖Tkf‖Lq(Rn) .
∫ 1−2−2−k

1−21−k
‖
∫
Sn−1

e2πirx·ξf̂(rξ)dσn−1ξ‖Lq(Rn)r
n−1dr.

Theorem 4.4 yields then with q = 2n+1
n−1

,

‖Tkf‖Lq(Rn) .
∫ 1−2−2−k

1−21−k
‖f̂(r·)‖L2(Sn−1)r

n−1dr.

From this we obtain using Schwartz’s inequality, the fact that r ≈ 1 and Plancherel’s
theorem,

‖Tkf‖Lq(Rn) . (

∫ 1−2−2−k

1−21−k
‖f̂(r·)‖2

L2(Sn−1)r
n−1dr)1/22−k/2 ≤ ‖f‖L2(Rn)2

−k/2.

Since spt f ⊂ B(0, 2k), we get

‖Tkf‖Lq(Rn) . 2−k/22kn
q−2
2q ‖f‖Lq(Rn) = 2k

n−1
2(n+1)‖f‖Lq(Rn).

Recalling now that Sδ =
∑∞

k=0 2−kδTk and that δ > n−1
2(n+1)

, we see that Sδ is
bounded Lq → Lq for q = 2n+1

n−1
. The general case follows from this by inter-

polation.
Stein uses in [S] again stationary phase. The formulation is a little different;

δ >
n− 1

2(n+ 1)

is replaced by

1 ≤ p ≤ 2(n+ 1)

n+ 3
or

2(n+ 1)

n− 1
≤ p <∞,

but presumably these are essentially equivalent. The key lemma is

Lemma 7.13. Let ψ be a smooth function with compact support in Rn. Define

Gλf(x) =

∫
eλ|x−y|ψ(x− y)f(y)dy, x ∈ Rn, λ > 0.

Then for 1 ≤ p ≤ 2(n+1)
n+3

and λ > 0,

‖Gλf‖p . λ−n/p
′‖f‖p.

A difference to the earlier case is that the phase function |x − y| is not smooth.
To overcome this one can consider

G̃λf(x) =

∫
eλ|x−y|ψ̃(x− y)f(y)dy,

where the support of ψ̃ does not meet the origin. For this and other details, see
[S].
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7.4. Summary of conjectures. I collect here the conjectures we have discussed
and some relations between them:

(1) Kakeya conjecture 5.1:
Every Besicovitch set in Rn has Hausdorff dimension n.

(2) Kakeya maximal conjecture 5.4:

‖f ∗δ ‖Ln(Sn−1) ≤ Cεδ
−ε‖f‖n for all ε > 0, f ∈ Ln(Rn).

(3) Restriction conjecture 4.3:

‖f̂‖Lq(Rn) ≤ Cq‖f‖L∞(Sn−1) (or ≤ Cq‖f‖Lq(Sn−1)) for q > 2n/(n− 1).

(4) Bochner-Riesz conjecture 7.12:
mδ is an Lp-multiplier if and only if

2n

n+ 1 + 2δ
< p <

2n

n− 1− 2δ
.

We proved that (2) implies (1) in Theorem 5.5 and (3) implies (2) in Theorem
5.12. As mentioned above (4) implies (3) by [Tao]. All these conjectures are true
in R2.

8. (n, k) BESICOVITCH SETS

What can we say if we replace in the definition of Besicovitch sets the line
segments with pieces of k-dimensional planes?

We denote by G(n.k) the space of k-dimensional linear subspaces of Rn. It is a
compact metric space with, for example, the metric

d(V,W ) = ‖PV − PW‖,
where PV : Rn → V is the orthogonal projection and ‖L‖ is any norm for linear
maps L : Rn → Rn. We denote γn,k the unique orthogonally invariant Borel
probability measure on G(n, k). It can be defined by

γn,k(A) = θn({g ∈ O(n) : g(V0) ∈ A, A ⊂ G(n, k)}),
where θn is the Haar probability measure on the orthogonal group O(n) and V0 ∈
G(n, k) is any fixed k-plane. For k = 1 and k = n− 1 we can reduce this measure
to the surface measure on Sn−1; denoting Lv = {tv : t ∈ R},

γn,1(A) = c(n)σn−1({v ∈ Sn−1 : Lv ∈ A}), A ⊂ G(n, 1),

γn,n−1(A) = c(n)σn−1({v ∈ Sn−1 : L⊥v ∈ A}), A ⊂ G(n, n− 1).

Definition 8.1. A set B ⊂ Rn is said to be an (n, k) Besicovitch set if Ln(B) = 0
and for every V ∈ G(n, k) there is a ∈ Rn such thatHk(B ∩ (V + a)) > 0.
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HereHk is the k-dimensional Haudorff measure whose restriction to a k-plane
is just the Lebesgue measure of that plane. We could as well ask that B ∩ (V + a)
contains a unit k ball as in the case k = 1. The existence questions would probably
be equivalent, though I am not sure.

The first question is: do they exist if k > 1? The first result on this was proved
by Marstrand in 1979 in [M1]:

Theorem 8.2. There are no (3, 2) Besicovitch sets. More precisely, if E ⊂ R3 and
L3(E) = 0, then for almost all V ∈ G(3, 2),H2(E ∩ (V + a)) = 0 for all a ∈ R3.

Proof. Clearly we can assume that E ⊂ B(0, 1/2). Denote for v ∈ S2 and A ⊂
B(0, 1),

f(A, v) = sup{H2(A ∩ (L⊥v + a)) : a ∈ R3}.

We shall prove that

(8.1) (

∫ ∗
f(A, V )dγ3,2V )2 . L3(A),

where
∫ ∗ is the upper integral. The theorem clearly follows from this. Obviously

it suffices to prove (8.1) for open sets A. It is easy to check that if Bi ⊂ R3 is an in-
creasing sequence of Borel sets withB = ∪iBi, then f(B, V ) ≤ lim infi→∞ f(Bi, V ).
Therefore it is enough to prove (8.1) for disjoint finite unions of cubes of the same
side-length (when adding new smaller cubes split the earlier ones to match the
size). Thus let B = ∪mi=1Qj ⊂ B(0, 1) where the Qj’s are disjoint cubes of side-
length δ.

For every v ∈ S2 the function a 7→ H2(B ∩ (L⊥v + a)) attains its supremum for
some a ∈ R3; except the v’s orthogonal to coordinate planes it is a continuous
function of a and for these six exceptional vectors it takes only finitely many val-
ues. Choose for every v ∈ S2 some a ∈ R3 such that with A(v) = L⊥v + a we have
F (B, v) = H2(B ∩A(v)). Clearly this choice can be made so that the function A is
a Borel function.
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We can now estimate using Schwartz’s inequality and Fubini’s theorem,

(

∫
f(B, v)dσ2v)2 = (

∫
H2(B ∩ A(v))dσ2v)2

= (
m∑
j=1

∫
H2(Qj ∩ A(v))dσ2v)2 ≤ m

m∑
j=1

(

∫
H2(Qj ∩ A(v))dσ2v)2

= m
m∑
j=1

∫
S2×S2

H2 ×H2((Qj ×Qj) ∩ (A(v)× A(w)))d(σ2 × σ2)(v, w)

= m

∫
S2×S2

H2 ×H2(∪mj=1(Qj ×Qj) ∩ (A(v)× A(w)))d(σ2 × σ2)(v, w)

≤ m

∫
S2×S2

H2 ×H2({(x, y) ∈ A(v)× A(w) : |x|, |y| ≤ 1, |x− y| ≤
√

3δ})d(σ2 × σ2)(v, w)

≤ m

∫
S2×S2

∫
B(0,1)∩A(v)

H2(B(x,
√

3δ) ∩ A(w))dH2xd(σ2 × σ2)(v, w)

≤ 3πδ2m

∫
S2×S2

H2({x ∈ B(0, 1) ∩ A(v) : dist(x,A(w)) ≤
√

3δ})d(σ2 × σ2)(v, w)

.

We estimate the last integrand by elementary geometry. For this we may assume
v 6= ±w and that the planes A(v) and A(w) go through the origin. Then A(v) 6=
A(w) and A(v) and A(w) intersect along a line L ∈ G(3, 1). Denote by 2α(v, w)

the angle between v and w. Then if x ∈ A(v) ∩ B(0, 1) and dist(x,A(w)) ≤
√

3δ,
we must have |x| ≤

√
3δ

sin(α(v,w))
. This implies that our set is contained in a rectangle

with sidelengths 2
√

3δ
sin(α(v,w))

and 2. This gives

H2({x ∈ B(0, 1) ∩ A(v) : dist(x,A(w)) ≤
√

3δ}) ≤ 4
√

3δ

sin(α(v, w))
,

and

(

∫
f(B, v)dσ2v)2 ≤ 3πδ2m

∫
4
√

3δ

sin(α(v, w))
d(σ2 × σ2)(v, w).

For any fixed w ∈ S2,∫
sin(α(v, w))−1dσ2v ≈

∫
B2(0,1)

|x|−1dt ≈ 1.

Combining these we conclude

(

∫
f(B, v)dσ2v)2 . mδ3 = L3(B),

as required. �

The following result was proved by Falconer in [F1]:
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Theorem 8.3. There are no (n, k) Besicovitch sets for k > n/2. More precisely, if
k > n/2 and E ⊂ Rn with Ln(E) = 0, then for almost all V ∈ G(n, k),

Hk(E ∩ (V + a)) = 0 for all a ∈ Rn.

Proof. We shall use the following formula, say for non-negative Borel functions f :

(8.2)
∫
Rn
fdLn = c(n, k)

∫
G(n,k)

∫
V ⊥
|x|kf(x)dHkxdγn,kV.

To prove this, integrate the right hand side in the spherical coordinates of V ⊥:∫
G(n,k)

∫
V ⊥
|x|kf(x)dHkxdγn,kV

=

∫
G(n,k)

∫ ∞
0

∫
V ⊥∩Sn−1

rkf(rv)dσk−1vrn−k−1drdγn,kV

=

∫ ∞
0

rn−1

∫
G(n,k)

∫
V ⊥∩Sn−1

f(rv)dσk−1vdγn,kV dr.

For non-negative Borel functions on Sn−1,∫
G(n,k)

∫
V ⊥∩Sn−1

g(v)dσk−1vdγn,kV = c(n, k)

∫
Sn−1

gdσn−1,

because the left hand side defines an orthogonally invariant measure on Sn−1 and
such a measure is unique up to multiplication by a constant. Thus∫

G(n,k)

∫
V ⊥
|x|kf(x)dHkxdγn,kV =

∫ ∞
0

rn−1

∫
Sn−1

f(rv)dσn−1vdr =

∫
Rn
fdLn.

Suppose now f ∈ L1(Rn) ∩ L2(Rn). Let V ∈ G(n, k). If ξ ∈ V ⊥, then, writing
for a moment x = xV + x′V , xV ∈ V, x′V ∈ V ⊥, we have by Fubini’s theorem,

f̂(ξ) =

∫
V ⊥

e−2πiξ·x′V

∫
V+x′V

fdHkdx′V = F̂V (ξ).

Thus by (8.2) and Schwartz’s inequality,∫
G(n,k)

∫
{ξ∈V ⊥:|ξ|≥1}

|F̂V (ξ)|dHkξdγn,kV =

∫
G(n,k)

∫
{ξ∈V ⊥:|ξ|≥1}

|f̂(ξ)|dHkξdγn,kV

= c(n, k)

∫
{ξ∈Rn:|ξ|≥1}

|f̂(ξ)||ξ|−kdξ ≤ c(n, k)(

∫
|f̂(ξ)|2dξ)1/2(

∫
{ξ∈Rn:|ξ|≥1}

|ξ|−2kdξ)1/2

= c′(n, k)‖f‖2,

where c′(n, k) <∞ since 2k > n. As ‖f̂‖∞ ≤ ‖f‖1 and k < n, we have also∫
G(n,k)

∫
{ξ∈V ⊥:|ξ|≤1}

|F̂V (ξ)|dHkξdγn,kV =

c(n, k)

∫
{ξ∈Rn:|ξ|≤1}

|f̂(ξ)||ξ|−kdξ . ‖f‖1.
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So we see that for almost all V ∈ G(n, k), F̂V ∈ L1(V ⊥). By Fubini’s theorem
also FV ∈ L1(V ⊥) for all V ∈ G(n, k). Thus Fourier inversion formula implies
‖FV ‖L∞(V ⊥) ≤ ‖F̂V ‖L1(V ⊥) for almost all V ∈ G(n, k). Consequently,

(8.3)
∫
G(n,k)

‖FV ‖L∞(V ⊥)dγn,kV ≤
∫
G(n,k)

∫
V ⊥
|F̂V (ξ)|dHkξdγn,kV . ‖f‖1 + ‖f‖2.

Now we return to E. Take a sequence Ui of open sets such that E ⊂ Ui and
Ln(Ui)→ 0. We apply (8.3) to the characteristic functions fi := χUi of Ui. Let Fi,V
be the related functions on V ⊥;Fi,V (a) = Hk(Ui ∩ (V + a)). The key observation
now is that

sup{Hk(Ui ∩ (V + a)) : a ∈ V ⊥} = ‖Fi,V ‖L∞(V ⊥).

This is easy to see: if M is the supremum on the left hand side and t < M , pick
a ∈ V ⊥ such that Hk(Ui ∩ (V + a)) > t. Then Hk(K + a) > t for some compact
subset K of V such that K + a ⊂ Ui ∩ (V + a). Then K + b ⊂ Ui ∩ (V + b) for b in
some neighborhood of a, and the observation follows. Combining this with (8.3)
we conclude that∫ ∗

sup{Hk(E ∩ (V + a)) : a ∈ V ⊥}dγn,kV

≤ lim inf
i→∞

∫
sup{Hk(Ui ∩ (V + a)) : a ∈ V ⊥}dγn,kV

. lim inf
i→∞

(Ln(Ui) + Ln(Ui)
1/2) = 0.

This proves the theorem. �

The above proof shows that for almost all V ∈ G(n, k) the functions FV agree
almost everywhere with continuous functions. It can be developed to give more
information about the differentiability properties of these functions for f ∈ Lp,
see [F1].

It is an open question whether there exist (n, k) Besicovitch sets for any k > 1.
With considerable effort the above simple results can be improved. This is due
to Bourgain from [B] and the best known information is that there exist no (n, k)
Besicovitch sets if 2k−1 + k ≥ n.
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9. HAUSDORFF DIMENSION OF BESICOVITCH SETS

Since we cannot solve the Kakeya conjecture, we could at least try to find lower
bounds for the Hausdorff dimension of Besicovitch sets. The trivial one is 1. We
have also the lower bound 2. We proved it in the plane and essentially the same
proof gives it in higher dimensions. In fact, it follows immediately combining Re-
marks 5.6 and 5.8. One can also argue that the projection of a Besicovitch set on
any 2-plane is essentially a Besicovitch set (the line segments could have length
less that 1) and since projections don’t increase dimension, we get the above state-
ment.

9.1. Bourgain’s bushes and lower bound (n + 1)/2. Next we shall derive lower
bound n+1

2
. First we observe that the proof of Theorem 5.5 gives the following,

check this as an exercise:

Theorem 9.1. Suppose that for some 1 ≤ p ≤ q <∞ and β > 0 there is a positive
number C such that

(9.1) σn−1({e ∈ Sn−1 : (χE)∗δ(e) > λ}) ≤ C(λ−1δ−βLn(E)1/p)q

for all Lebesgue measurable sets E ⊂ Rn and all positive numbers δ and λ. Then
the Hausdorff dimension of every Besicovitch set in Rn is at least n− βp.

Our next plan is to verify (9.1) for p = (n+ 1)/2, q = n+ 1 and β = n− 1 to get
the lower bound (n+1)/2 for the Hausdorff dimension of Besicovitch sets. Before
doing this let us contemplate a little what (9.1) means. It is a restricted weak
type inequality (restricted since it only deals with characteristic functions) which
would follow immediately by Chebyshev’s inequality from the corresponding
strong type inequality (if we knew it):

‖f ∗δ ‖Lq(Sn−1) . δ−β‖f‖p.
The converse is not true, but if we have restricted weak type inequalities for pairs
(p1, q1) and (p2, q2) we have the strong type inequality for the appropriate pairs
(p, q) between (p1, q1) and (p2, q2) by interpolation results of Stein and Weiss, see
[SW] or [G1]. Recall the Kakeya maximal conjecture 5.1:

‖f ∗δ ‖Ln(Sn−1) ≤ Cεδ
−ε‖f‖n for all ε > 0.

Interpolating this with the trivial estimate ‖f ∗δ ‖L∞(Sn−1) ≤ Cεδ
1−n‖f‖1 gives the

equivalent conjecture

‖f ∗δ ‖Lq(Sn−1) ≤ Cεδ
−(n/p−1+ε)‖f‖p for all ε > 0, 1 ≤ p ≤ n, q = (n− 1)p′.

In the next theorem we shall prove the restricted weak type version of this
corresponding to p = (n+ 1)/2, q = n+ 1.

Theorem 9.2. There is a positive number C(n) such that

(9.2) σn−1({e ∈ Sn−1 : (χE)∗δ(e) > λ}) ≤ C(n)δ1−nλ−(n+1)Ln(E)2

for all Lebesgue measurable sets E ⊂ Rn and all positive numbers δ and λ. In
particular, the Hausdorff dimension of every Besicovitch set in Rn is at least (n+
1)/2.



50 PERTTI MATTILA

Proof. The inequality (9.2) means that the assumption (9.1) holds with p = n+1
2
, q =

n + 1 and β = n−1
n+1

so that the statement about Besicovitch sets follows from The-
orem 9.1.

Let Sn−1
+ = {e ∈ Sn−1 : en > 1/2} and

A = {e ∈ Sn−1
+ : (χE)∗δ(e) > λ}.

To prove (9.2) it is enough to estimate the measure of A. We can choose a max-
imal δ-separated set {e1, . . . , eN} ⊂ A such that N & δ1−nσn−1(A) and tubes
Tj = T δej(aj) for which

(9.3) Ln(E ∩ Tj) > λLn(Tj) ≈ λδn−1.

To prove (9.2) it suffices then to show that

(9.4) Ln(E) &
√
Nδn−1λ

n+1
2 .

Let m be the smallest integer such that every point of E belongs to at most m
tubes Tj . This means that

(9.5)
∑
j

χE∩Tj ≤ m

and there is x ∈ E which belongs at least to m tubes Tj . Integration of (9.5) over
E gives by (9.3) that

(9.6) Ln(E) &
∑
j

m−1Ln(E ∩ Tj) & m−1Nλδn−1.

To make use of x assume that it belongs to the first m tubes Tj ; x ∈ Tj for j =
1, . . . ,m. Let c be a positive constant depending only n such that

Ln(B(x, cλ) ∩ T δe (a)) ≤ λ

2
Ln(T δe (a))

for every e ∈ Sn−1, a ∈ Rn; the existence of such a constant is an easy exercise.
Then by (9.3) for j = 1, . . . ,m,

(9.7) Ln(E ∩ Tj \B(x, cλ)) ≥ λ

2
Ln(Tj) ≈ λδn−1.

By simple elementary plane geometry there is an absolute constant b ≥ c such
that for any e, e′ ∈ Sn−1

+ , a1, a2 ∈ Rn,

(9.8) diam(T δe (a1) ∩ T δe′(a2)) ≤ bδ

|e− e′|
.

Let e′1, . . . , e′m′ be a maximal bδ
cλ

-separated subset of e1, . . . , em. Here bδ
cλ
≥ δ, when

we assume, as we of course may, that λ ≤ 1. The balls B(e′k,
2bδ
cλ

), k = 1, . . . ,m′,
cover the disjoint balls B(ej, δ/3), j = 1, . . . ,m. Thus

mδn−1 ≈ σn−1(∪mj=1B(ej, δ/3)) ≤ σn−1(∪m′k=1B(e′k,
2bδ

cλ
)) . m′(δ/λ)n−1,
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whence m′ & λn−1m. By (9.8) the sets E ∩ T ′k \ B(x, cλ), k = 1, . . . ,m′, (T ′k corre-
sponds to e′k) are disjoint. Therefore by (9.7),

(9.9) Ln(E) & λδn−1m′ & λnδn−1m.

Now both inequalities (9.6) and (9.9) hold. Consequently

Ln(E) & max{λnδn−1m,m−1Nλδn−1} ≥
√

(λnδn−1m)(m−1Nλδn−1) =
√
Nδn−1λ

n+1
2 .

and (9.4) follows. �

The above theorem is due to Drury from 1983; he proved Lp-estimates for the
X-ray transform Tf(L) =

∫
L
f, L ⊂ Rn a line, which are essentially the same

as the Kakeya estimates. The bound (n + 1)/2 is a bit annoying as it doesn’t
agree with the optimal bound 2 in the plane. The above method with ’bushes’,
bunches of tubes containing a common point, is due to Bourgain from [B]. In fact,
Bourgain proved sharper Kakeya estimates with better bounds for the Hausdorff
dimension of Besicovitch sets. This method also lead to the non-existence of (n, k)
Besicovitch sets for 2k−1 + k ≥ n mentioned in the previous section, and to the
first partial results on the restriction conjecture better than the one following from
Tomas-Stein theorem.

9.2. Wolff’s hairbrushes and lower bound (n + 2)/2. Bourgain’s results were
improved by Wolff in [W1]. He got the lower bound (n + 2)/2 for the Hausdorff
dimension of Besicovitch sets, agreeing with 2 in the plane. We shall prove this
next. First we formulate another sufficient condition giving lower bound for the
dimension of Besicovitch sets. This condition means again boundedness of the
Kakeya maximal operator, I shall comment on this a little later.

Theorem 9.3. Let 1 < p < ∞. Suppose that and 0 < δ < 1 for every δ-separated
subset {e1, . . . , em} of Sn−1 and for all a1, . . . , am ∈ Rn,

(9.10) ‖
m∑
j=1

χT δej
(aj)‖Lp(Rn) ≤ Cεδ

n/p−n+1−ε

for all ε > 0. Then the Hausdorff dimension of every Besicovitch set in Rn is at
least p/(p− 1).

Proof. The proof proceeds along similar lines as that of Theorem 5.5. Let B ⊂
Rn be a Besicovitch set. Then B is compact (though this is not essential as an
easy modification of the proof shows) and for every e ∈ Sn−1 there is a unit line
segment Ie ⊂ B parallel to e. Let 0 < α < p/(p−1) = p′ and let Bj = B(xj, rj), j =
1, 2, . . . , be balls such that rj ≤ 1/100 and B ⊂ ∪jBj . It suffices to show that∑

j r
α
j & 1. For k = 1, 2, . . . , set

Jk = {j : 2−k ≤ rj < 21−k},
and

Fk = ∪j∈JkB(xj, 10rj).

By the compactness of B we may assume that there are only finitely balls Bj .
Let η > 0 such that rj > η for all j, and choose a maximal η-separated set
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{e1, . . . , em} ⊂ Sn−1. Then m ≈ η1−n . Set Tj = T ηej(aej) with aej the center of
Iej . Then the balls 10Bi cover each Tj , that is,

Tj ⊂ ∪kFk.

From this we obtain∑
k

∫
Fk

∑
j

χTj ≥
∑
j

Ln(Tj ∩ ∪kFk) =
∑
j

Ln(Tj) ≈ mηn−1 ≈ 1.

It follows that for some k, ∫
Fk

∑
j

χTj & k−2.

Put δ = 2−k > η for this k. Partition Sn−1 into disjoint Borel sets Sj, j = 1, . . . ,M ≈
η1−n with σn−1(Sj) ≈ ηn−1, and define T̃j = T δej(aej), T (e) = Tj and T̃ (e) = T̃j ,
when e ∈ Sj . Then by simple geometry,

η1−nLn(Tj ∩ Fk) . δ1−nLn(T̃j ∩ Fk).

Therefore

k−2 .
∫
Fk

∑
j

χTjdLn

≈ η1−n
∑
j

∫
Fk

∫
Sj

χT (e)(x)dσn−1edLnx = η1−n
∫ ∫

Fk

χT (e)(x)dLnxdσn−1e

=

∫
η1−nLn(T (e) ∩ Fk)dσn−1e .

∫
δ1−nLn(T̃ (e) ∩ Fk)dσn−1e

= δ1−n
∫ ∫

Fk

χT̃ (e)dL
ndσn−1e.

We shall now use the following simple lemma:

Lemma 9.4. If 0 < δ < 1 and f is a non-negative Borel function f on Sn−1 , then
there is a δ-separated set {u1, . . . , ul} ⊂ Sn−1 such that l ≈ δ1−n and

∑l
j=1 f(uj) ≥

l
∫
fdσn−1/σn−1(Sn−1).

Proof. Let {v1, . . . , vl} ⊂ Sn−1 be a δ-separated set with l ≈ δ1−n and let θn be the
Haar measure on on the orthogonal group O(n) with θn(O(n)) = σn−1(Sn−1). For
every v ∈ Sn−1 the functional f 7→

∫
f(g(v))dθng defines an orthogonally invari-

ant Borel measure on Sn−1 which, by the uniqueness of such measures, agrees
with σn−1. Hence

∫ ∑l
j=1 f(g(vj))dθng = l

∫
fdσn−1, and there is g ∈ O(n) such

that
∑l

j=1 f(g(vj)) ≥ l
∫
fdσn−1/σn−1(Sn−1). So {g(vj) : j = 1, . . . , l} is the desired

δ-separated set. �
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Applying this with f(e) =
∫
Fk
χT̃ (e)dLn we find a δ-separated set {u1, . . . , ul} ⊂

Sn−1 and the corresponding tubes Uj = T̃ (uj) such that l ≈ δ1−n and∫
Fk

l∑
j=1

χUjdLn & k−2.

Hence by Hölder’s inequality and (9.10),

k−2 . ‖
l∑

j=1

χUj‖Lp(Rn)Ln(Fk)
1/p′ . Cεδ

n/p−n+1−ε(#Jkδ
n)1/p′ = Cεδ

−n/p′+1−ε(#Jkδ
n)1/p′ .

Recalling that δ = 2−k, and so k ≈ log(1/δ), and α < p′, we get

Cp′

ε

∑
j

rαj & Cp′

ε #Jkδ
α & log(1/δ)−2δp

′(n/p′−1+ε)−n+α = log(1/δ)−2δ−p
′+p′ε−α & 1

as required, when we choose ε small enough. �

Theorem 9.5. Let 0 < δ < 1. For every δ-separated subset {e1, . . . , em} of Sn−1

and for all a1, . . . , am ∈ Rn,

(9.11) ‖
m∑
j=1

χT δej
(aj)‖Lp(Rn) ≤ Cεδ

n/p−n+1−ε

for all ε > 0 with p = (n + 2)/n. In particular, the Hausdorff dimension of every
Besicovitch set in Rn is at least (n+ 2)/2.

Proof. The statement about Besicovitch sets follows immediately from Theorem
9.3. Let Tj = T δej(aj), j = 1, . . . ,m, be as in the theorem. We may assume that
|ei − ej| < 1 for all i and j in order to avoid that far away directions would
correspond to nearby tubes. We shall use ’bilinear approach’, that is, we write
the p’th power of (9.11) as∫

(
m∑
j=1

χTj)
p =

∫
((

m∑
j=1

χTj)
2)p/2 =

∫
(
∑
i,j

χTiχTj)
p/2.

Next we split this double sum into parts according to the distance (or angle) be-
tween the directions. Let N be the smallest integer such that 2−N < δ and set

Jk = {(i, j) : 2−k < |ei − ej| ≤ 21−k}, k = 1, . . . , N,

I0 = {1, . . . ,m}.
Now we have ∑

i,j

χTiχTj =
N∑
k=1

∑
(i,j)∈Jk

χTiχTj + 2
∑
i∈I0

χTi .

Observe that p/2 < 1 if n > 2, so we cannot use the triangle inequality. But the
elementary inequality (a + b)q ≤ aq + bq, a, b > 0, 0 < q ≤ 1, will be enough.
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Applying this we obtain∫
(
m∑
i=1

χTi)
p ≤

N∑
k=1

∫
(
∑

(i,j)∈Jk

χTiχTj)
p/2 + 2

∫
(
∑
i∈I0

χTi)
p/2.

Since there are about log(1/δ) values of k, the theorem will follow if we can prove
for every k = 1, . . . , N ,

(9.12)
∫

(
∑

(i,j)∈Jk

χTiχTj)
p/2 ≤ Cεδ

n−(n−1)p−ε,

and if we have the same estimate for the sum corresponding to I0. We shall only
prove this for Jk, the case of I0 follows by a slight modification of the argument.

So fix k ∈ {1, . . . , N}. Cover Sn−1 with balls B(vl, 2
−k), l = 1, . . . , Nk ≈ 2(n−1)k.

Then for every pair (i, j) ∈ Jk ei, ej ∈ Bl := B(vl, 2
1−k) for some l. It follows that∫

(
∑

(i,j)∈Jk

χTiχTj)
p/2 .

Nk∑
l=1

∫
(

∑
(i,j)∈Jk,ei,ej∈Bl

χTiχTj)
p/2.

As Nk ≈ 2(n−1)k we are reduced to showing for every l,

(9.13)
∫

(
∑

(i,j)∈Jk,ei,ej∈Bl

χTiχTj)
p/2 ≤ 2−(n−1)kCεδ

n−(n−1)p−ε.

Our next step will be to reduce this to the case k = 1, that is, |ei − ej| ≈ 1. So sup-
pose we know (9.13) for k = 1. Let k > 1 and l as above; we may assume that vl =
(0, . . . , 0, 1). Consider the linear mapping L,L(x) = (2−k−1x1 . . . , 2

−k−1xn−1, xn).
Then detL = 2−(k+1)(n−1) and χTj ◦ L = χL−1(Tj). By change of variable,∫

(
∑

(i,j)∈Jk,ei,ej∈Bl

χTiχTj)
p/2 = 2−(n−1)(k+1)

∫
(

∑
(i,j)∈Jk,ei,ej∈Bl

χL−1(Ti)χL−1(Tj))
p/2.

The sets L−1(Ti) are contained in 2k+1δ-tubes whose directions L−1(ei) satisfy
1/2 < |L−1(ei) − L−1(ej)| ≤ 1 for the pairs (i, j) which appear in the above sum.
We can therefore apply our assumption that (9.13) holds for k = 1 to get∫

(
∑

(i,j)∈Jk,ei,ej∈Bl

χTiχTj)
p/2 ≤ Cε2

−(n−1)k(2kδ)n−(n−1)p−ε ≤ Cε2
−(n−1)kδn−(n−1)p−ε,

as n− (n− 1)p ≤ 0 (recall that p = (n+ 2)/2).
We have now reduced to proving that if {e1, . . . , eM} is a δ-separated subset

of Sn−1, Ti = T δei(ai), i = 1, . . . ,M , for some ai ∈ Rn and J0 = {(i, j) : 1/2 ≤
|ej − ek| < 1}, then

(9.14)
∫

(
∑

(i,j)∈J0

χTiχTj)
p/2 ≤ Cεδ

n−(n−1)p−ε.
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Let’s make one more reduction: partition Sn−1 into subsets Sl, l = 1, . . . , N(n),
of diameter less than 1/4. Then for any pair (i, j) ∈ J0 there are l and m such that
ei ∈ Sl, ej ∈ Sm and dist(Sl, Sm) > 1/4. To prove (9.14) it suffices to consider each
such pair (l,m) separately. That is, it suffices to prove that

(9.15)
∫

((
∑
i∈I

χTi)(
∑
j∈J

χTj))
p/2 =

∫
(
∑

i∈I,j∈J

χTiχTj)
p/2 ≤ Cεδ

n−(n−1)p−ε

where I, J ⊂ {1, . . . ,M} such that |ei− ej| > 1/4 when i ∈ I, j ∈ J and M . δ1−n.
For µ, ν ∈ {1, . . . ,M}, set

Eµ,ν = {x : µ ≤
∑
i∈I

χTi(x) < 2µ, ν ≤
∑
j∈J

χTj(x) < 2ν}.

Then we have for the left hand side of (9.15)∫
((
∑
i∈I

χTi)(
∑
j∈J

χTj))
p/2 =

∑
µ,ν

∫
Eµ,ν

((
∑
i∈I

χTi)(
∑
j∈J

χTj))
p/2 ≤

∑
µ,ν

(4µν)p/2Ln(Eµ,ν),

where the summation is over the dyadic integers µ and ν of the form 2l ≤ M, l ∈
N. There are only . log(1/δ)2 pairs of them. Thus we can find such a pair (µ, ν)
for which ∫

Eµ,ν

((
∑
j∈I

χTi)(
∑
j∈J

χTj))
p/2 . Cεδ

−ε(µν)p/2Ln(Eµ,ν).

Taking also into account that p = (n+ 2)/n, (9.15) is now reduced to

(9.16) (µν)(n+2)/(2n)Ln(Eµ,ν) . Cεδ
(2−n)/n−ε.

Keeping the pair (µ, ν) which we found fixed, we define for dyadic rationals κ
and λ of the form 2−l, l ∈ N,

Iκ = {i ∈ I : (κ/2)Ln(Ti) ≤ Ln(Ti ∩ Eµ,ν) < κLn(Ti)},

Jλ = {j ∈ J : (λ/2)Ln(Tj) ≤ Ln(Tj ∩ Eµ,ν) < λLn(Tj)}.

By the definition of Eµ,ν ,∫
Eµ,ν

∑
i∈I

∑
j∈J

χTiχTj ≈ µνLn(Eµ,ν).

We can write this as ∑
κ,λ

∫ ∑
i∈Iκ

∑
j∈Jλ

χTiχTj ≈ µνLn(Eµ,ν),
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where the summation in κ and λ is over dyadic rationals as above. We can restrict
to κ and λ at least δn, since, for example,∑

κ≤δn

∫
Eµ,ν

∑
i∈Iκ

∑
j∈Jλ

χTiχTj ≤
∞∑
l=1

∑
2−lδn≤κ≤21−lδn

#J

∫
Eµ,ν

∑
i∈Iκ

χTi

. δ1−n
∞∑
l=1

∑
i∈Iκ

21−lδnLn(Ti) . δ ≤ δ(2−n)/n.

Thus we have again only ≈ log(1/δ) values to consider and we find and fix κ and
λ for which

(9.17) µνLn(Eµ,ν) ≤ Cεδ
−ε
∫
Eµ,ν

∑
i∈Iκ

∑
j∈Jλ

χTiχTj .

Then by the definition of Eµ,ν ,

µνLn(Eµ,ν) ≤ Cεδ
−εν

∫
Eµ,ν

∑
i∈Iκ

χTi = Cεδ
−εν

∑
i∈Iκ

Ln(Eµ,ν ∩ Ti)

≤ Cεδ
−ενκ

∑
i∈Iκ

Ln(Ti) . Cεδ
−ενκ#Iκδ

n−1 . Cεδ
−ενκ,

because #Iκ . δ1−n. Thus,

(9.18) µLn(Eµ,ν) . Cεδ
−εκ.

We deduce from (9.17),

µνLn(Eµ,ν) . Cεδ
−ε
∑
j∈Jλ

∫
Tj

∑
i∈Iκ

χTiχTj .

Again, #Jλ . δ1−n, whence we find and fix j ∈ Jλ such that

δn−1µνLn(Eµ,ν) . Cεδ
−ε
∫
Tj

∑
i∈Iκ

χTiχTj = Cεδ
−ε
∑
i∈Iκ

Ln(Ti ∩ Tj).

Since above the directions of Ti and Tj are separated by 1/2, it follows that Ln(Ti∩
Tj) . δn, and we conclude

δn−1µνLn(Eµ,ν) ≤ Cεδ
−εδn#{i ∈ Iκ : Ti ∩ Tj 6= ∅}.

Now we have found Wolff’s hairbrush: tubes Ti, on the number of which we have
control, intersecting a fixed tube Tj . Next we shall make use of this in a somewhat
similar manner as we used Bourgain’s bushes in the proof of Theorem 9.2.

So now we have fixed µ, ν, κ, λ and j ∈ Jλ. Denote

Ĩ = {i ∈ Iκ : Ti ∩ Tj 6= ∅}

so that

(9.19) δ−1µνLn(Eµ,ν) ≤ Cεδ
−ε#Ĩ .
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Then for i ∈ Ĩ , Ln(Ti ∩ Eµ,ν) ≥ (κ/2)L(Ti). By simple geometry there is a positive
constant b depending only on n such that when we set

U = {x ∈ Rn : dist(x, Tj) > bκ},

we have for i ∈ Ĩ , Ln(Ti \ U) < (κ/4)Ln(Ti); recall that the directions ei and ej of
Ti and Tj satisfy |ei − ej| ≥ 1/2. Therefore

Ln(Ti ∩ Eµ,ν ∩ U) ≥ (κ/4)Ln(Ti).

Summing over i gives ∫
Eµ,ν

∑
i∈Ĩ

χTi∩U & κδn−1#Ĩ .

By Schwartz’s inequality,

κδn−1#Ĩ . ‖
∑
i∈Ĩ

χTi∩U‖2Ln(Eµ,ν)
1/2.

We shall prove that

(9.20) ‖
∑
i∈Ĩ

χTi∩U‖2 . (κ2−nδn−1#Ĩ)1/2.

Let us first see how we can complete the proof of the theorem from this.
Combining (9.20) with the previous inequality, we obtain

Ln(Eµ,ν) & κnδn−1#Ĩ .

Bringing in (9.19) we get
κnδn−2µν ≤ Cεδ

−e.

Recalling also (9.16) this gives

µn+1νLn(Eµ,ν)
n . δ2−n.

Interchanging µ and ν,
µνn+1Ln(Eµ,ν)

n . δ2−n.

Thus
Ln(Eµ,ν)

n .
√

(µ−n−1νδ2−n)(µν−n−1δ2−n) = (µν)−(n+2)/2δ2−n,

which is the desired inequality (9.16).
We have still left to prove (9.20). The square of the left hand side of it is∫

(
∑
i∈Ĩ

χTi∩U)2 =
∑
i,i′∈Ĩ

Ln(Ti ∩ Ti′ ∩ U) . κ2−nδn−1#Ĩ ,

provided we can show for every i′ ∈ Ĩ ,

(9.21)
∑
i∈Ĩ

Ln(Ti ∩ Ti′ ∩ U) . κ2−nδn−1.

Obviously it suffices to sum over i 6= j. We split this into the sums over

Ĩk = {i ∈ Ĩ : 2−k ≤ |ei − ej| < 21−k}, Ti ∩ Ti′ ∩ U 6= ∅}, k = 1, . . . , N ≈ log(1/δ) :
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∑
i∈Ĩ

Ln(Ti ∩ Tj ∩ U) =
N∑
k=1

∑
i∈Ĩk

Ln(Ti ∩ Ti′ ∩ U) .
N∑
k=1

#Ĩk2
kδn,

since, as before, by simple geometry, Ln(Ti ∩Ti′ ∩U) . 2kδn for i ∈ Ĩk. Once more
we use the fact that there are no more than about log(1/δ) terms in this sum to
reduce (9.21) to

(9.22) #Ik2
kδn ≤ κ2−nδn−1.

To see where this geometric fact follows from let us recall the situation. We have
fixed the two tubes Tj and Ti′ which intersect at an angle ≈ 1. For i ∈ Ĩk,
the tube Ti intersects both of these and Ti′ it intersects in U , that is, outside a
bκ-neighborhood of Tj . This means that these three tubes lie close to a two-
dimensional plane, in fact roughly at a distance δ/κ from a plane. After this
observation we leave it as an exercise to deduce (9.22) and finish the proof of
the theorem. �

9.3. Bourgain’s arithmetic method and lower bound cn+1−c. Bourgain proved
in [B1] that the Hausdorff dimension of all Besicovitch sets in Rn is at least 13

25
n+ 12

25
.

This estimate is better than Wolff’s n+2
2

only if n > 26, but in high dimensions
it is an improvement. Perhaps more interesting than the estimate itself is the
arithmetic method Bourgain introduced. He also used it to get Lp-estimates for
the Kakeya maximal operator.

Bourgain’s proof is fairly complicated. Here I only present a special case of
the result, a similar estimate for Minkowski (or box counting) dimension. The
presentation is based Tao’s lecture notes from his UCLA web page.

Definition 9.6. The (lower) Minkowski dimension of a bounded set A ⊂ Rn is

dimM A = inf{s > 0 : lim inf
δ→0

δs−nLn(Nδ(A)) = 0},

where Nδ(A) = {x : dist(x,A) < δ} is the open δ-neighborhood of A.

It is easy to easy show (or see [M], for example) that the Minkowski dimension
is always at least as big as the Hausdorff dimension. Hence the result below is
considerably weaker than Bourgain’s result.

Theorem 9.7. For any Besicovitch set B in Rn, dimM B ≥ c0n + 1 − c0 with c0 =
153
305

> 1/2.

Note that c0 > 1/2 so that this bound is also greater than (n + 2)/2 for large n.
It is clear that small modifications in the proof would give a bigger c0. We shall
prove the theorem for slightly modified Besicovitch sets, but it can readily be
reduced to these. Namely, we assume that B ⊂ [0, 1]n and for every v ∈ [0, 1]n−1

there is x ∈ [0, 1]n−1 such that B contains the line segment

I(x, v) := {(x, 0) + t(v, 1) : 0 ≤ t ≤ 1}.
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We make the counterassumption that dimM B < cn + 1 − c for some c < c0 and
try to achieve a contradiction. By the definition of the Minkowski dimension

Ln(N2δ(B)) ≤ δ(1−c)(n−1)

for some arbitrarily small δ > 0, which we now fix for a moment. For any A ⊂ Rn

let
A(t) = A ∩ (Rn−1 × {t})

be the horizontal slice of A at the level t. By Fubini’s theorem∫ 1

0

Ln−1(N2δ(B)(t)) ≤ δ(1−c)(n−1),

so Chebyshev’s inequality gives,

L1({t ∈ [0, 1] : Ln−1(N2δ(B)(t)) > 100δ(1−c)(n−1)}) < 1/100.

Setting
A = {t ∈ [0, 1] : Ln−1(N2δ(B)(t)) ≤ 100δ(1−c)(n−1)}

we have L1(A) > 99/100. From this it follows (as an easy exercise) that there are
s, s + d, s + 2d ∈ A with d > 1/10. (In fact, any measurable subset of R with
positive measure contains an arithmetic progression of length 3 due to a theorem
of Roth, but this is not so easy anymore.) We can assume that s = 0 and d = 1/2
so that our numbers are now 0, 1/2 and 1.

For t ∈ [0, 1] set
B[t] = {i ∈ δZn−1 : (i, t) ∈ Nδ(B)}.

Then the balls B((i, t), δ/3), i ∈ B[t], are disjoint and contained in N2δ(B). Com-
bining this with the fact that 0, 1/2, 1 ∈ A we obtain by a simple measure compar-
ision

(9.23) ]B[0], ]B[1/2], ]B[1] .n δ
c(1−n).

Define for u, v ∈ Rn−1 the δ-tubes T vδ (u) = {y ∈ Rn : dist(y, I(u, v)) < δ}
modified to our situation, and

G = {(x, y) ∈ B[0]×B[1] : (x, 0), (y, 1) ∈ T vδ (u) ⊂ Nδ(B) for some u, v ∈ [0, 1]n−1}.
Then

]{x+ y ∈ G : (x, y) ∈ G} .n δc(1−n)

and
]{x− y ∈ G : (x, y) ∈ G} &n δ1−n.

To check the first of these inequalities observe that for (x, y) ∈ G, ((x + y)/2, 1/2)
belongs to the same tube as (x, 0) and (x, 1), so it belongs to Nδ(B). Since it also
belongs to 1

2
δZn−1, the cardinality of {x+ y ∈ G : (x, y) ∈ G} is dominated by the

cardinality of B[1/2], and the first inequality follows. The second inequality is a
consequence of the Besicovitch property ofB: there are roughly δ1−n δ-tubes with
δ-separated directions contained inNδ(B), each of these contains points (x, 0) and
(y, 1) for some (x, y) ∈ G and for different tubes the differences x− y, essentially
directions of these tubes, are different.
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So the sum set of G is small and its difference set is large. We shall derive a
contradiction from this using the following proposition:

Proposition 9.8. Let ε0 = 1
153

. There exists a positive number N0 with the follow-
ing property. Suppose that A and B are finite subsets of λZm for some m ∈ N and
λ > 0, #A ≤ N and #B ≤ N . Suppose G ⊂ A×B and

(9.24) ]{x+ y ∈ G : (x, y) ∈ G} ≤ N.

Then for N > N0,

(9.25) ]{x− y ∈ G : (x, y) ∈ G} ≤ N2−ε0 .

This is a purely combinatorial proposition and, as will be clear from the proof,
it holds for any free Abelian group in place of λZm. Theorem 9.7 follows applying
the proposition to what we did before with N = δc(1−n) if δ is sufficiently small.

Observe that the proposition trivial for ε0 = 0. The application of this gives
anyway dimM B ≥ (n + 1)/2, which is not completely trivial but much less than
we already know.

Now we begin the proof of Proposition 9.8 by assuming that it is false. Then
we have A,B ⊂ λZm and large N with

(9.26) ]A, ]B ≤ N,

and G ⊂ A×B satisfying (9.24) and

(9.27) #{x− y ∈ G : (x, y) ∈ G} > N2−ε0 ,

which of course yield

(9.28) N2−ε0 . #G ≤ N2.

Here and later in this proof the implicit constant in. is absolute. Above we could
take it 1, we modify G below and want (9.28) still to hold. We can assume that

(9.29) (x, y) 7→ x− y is one-to-one on G

simply by replacing G with a subset obtained by choosing one pair for every
difference and removing the rest from G. Denote

Gb = {a ∈ A : (a, b) ∈ G} for b ∈ B.
We may assume that

(9.30) #Gb ≥ N1−2ε0 for b ∈ B,
because removing those Gb × {b}’s from G for which #Gb < N1−2ε0 , say b ∈ B0,
reduces the cardinality ofG only by

∑
b∈B0

#Gb < N2−2ε0 and (9.28) remains valid
provided N is large enough.

The sum set being small means that many pairs have the same sum, and we
would like to have this property also for the differences. The key to this is the
trivial identity

a+ b = a′ + b′ ⇐⇒ a− b′ = a′ − b,
which we shall employ in the proof of the following lemma.
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Lemma 9.9. Let A,B ⊂ λZm, G ⊂ A× B and N ∈ N such that #A ≤ N,#B ≤ N ,
(9.24) and (9.28) hold. Then there exists I ⊂ A×B of cardinality

(9.31) #I & N2−5ε0

such that for all (a, b) ∈ I ,

(9.32) #{(a′, b′) ∈ A×B : a− b = a′ − b′} ≥ N1−3ε0 .

Proof. Define the sum counting function s on C := {a+ b : (a, b) ∈ G} by

s(x) = #{(a, b) ∈ G : a+ b = x}.
Then by (9.28), Schwartz’s inequality and (9.24) we have

N2−ε0 . #G =
∑
x∈C

s(x) ≤ (#C)1/2(
∑
x∈C

s(x)2)1/2 ≤ N1/2(
∑
x∈C

s(x)2)1/2,

whence ∑
x∈C

s(x)2 & N3−2ε0 .

This implies

#{(a, b, a′, b′) ∈ A×B × A×B : a+ b = a′ + b′} & N3−2ε0 ,

or equivalently,

#{(a, b, a′, b′) ∈ A×B × A×B : a− b′ = a′ − b} & N3−2ε0 .

Define the difference counting function d on {a− b : (a, b) ∈ A×B} by

d(x) = #{(a, b) ∈ A×B : a− b = x}.
Then the last inequality turns into

(9.33)
∑
x

d(x)2 & N3−2ε0 .

Since #(A×B) ≤ N2, we have ∑
x

d(x) ≤ N2,

so ∑
d(x)≤N1−3ε0

d(x)2 ≤ N3−3ε0 ,

and further using also (9.33), ∑
d(x)>N1−3ε0

d(x)2 & N3−2ε0 .

Combining this with the obvious fact that d(x) ≤ N for every x, we get

#{x : d(x) > N1−3ε0} & N1−2ε0 .

Letting I be the set of pairs (a, b) such that d(a − b) > N1−3ε0 , (9.32) follows from
the definition of I . Also (9.31) follows since every difference x = a−b, (a, b) ∈ I, is



62 PERTTI MATTILA

realized by at leastN1−3ε0 pairs (a′, b′) ∈ A×B, which all are in I by the definition
of I , and there are at least N1−2ε0 such differences. �

Next we shall make use of I and the identity

a− b = (a− b′)− (a′ − b′) + (a′ − b).

If we could find about N2 (up to suitable N−ε) pairs (a, b) having this representa-
tion for about N2 pairs (a′, b′) in such a way that the pairs (a, b′), (a′, b′) and (a′, b)
would belong to I , we would be done. Namely, then we could count by the pre-
vious lemma about N7 (up to suitable N−ε) different expressions (a1− b1)− (a2−
b2) + (a3 − b3). But there are only at most N6 six-tuples (a1, b1, a2, b2, a3, b3) alto-
gether which would lead to a contradiction. Now we proceed to do this more
precisely.

Let us say that b ∈ B and b′ ∈ B communicate, written as b ∼ b′, if

#{a ∈ A : (a, b), (a, b′) ∈ I} ≥ N1−55ε0 .

Lemma 9.10. There exists B′ ⊂ B such that #B′ & N1−5ε0 and

(9.34) #{(b, b′) ∈ B′ ×B′ : b 6∼ b′} . N2−44ε0 .

Proof. We shall find B′ as one of the sections

Ia := {b ∈ B : (a, b) ∈ I}.

By the definition of the communicavity,∑
a∈A

#{(b, b′) ∈ Ia × Ia : b 6∼ b′} =
∑
b 6∼b′

#{a ∈ A : (a, b), (a, b′) ∈ I}

≤
∑
b 6∼b′

N1−55ε0 ≤ N3−55ε0 .

On the other hand, we have by Schwartz’s inequality and (9.31),∑
a∈A

(#Ia)
2 ≥ (#A)−1(

∑
a∈A

#Ia)
2 = (#A)−1(#I)2 & N3−10ε0 .

Consequently,∑
a∈A

(#Ia)
2 −N44ε0

∑
a∈A

#{(b, b′) ∈ Ia × Ia : b 6∼ b′} & N3−10ε0 .

Since the cardinality of A is at most N , there must exist a ∈ A such that

(#Ia)
2 −N44ε0#{(b, b′) ∈ Ia × Ia : b 6∼ b′} & N2−10ε0 .

Then #Ia & N1−5ε0 and #{(b, b′) ∈ Ia × Ia : b 6∼ b′} ≤ N2−44ε0 , so that letting
B′ = Ia, the lemma follows. �

We have by (9.30)

#(G ∩ (A×B′)) =
∑
b∈B′

#Gb & N2−7ε0 .
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Let us define now

Ga = {b ∈ B′ : (a, b) ∈ G}

and

A′ = {a ∈ A : #Ga ≥ N1−8ε0}.

Then arguing as for (9.30),

#A′ & N1−7ε0 and #(G ∩ (A′ ×B′)) & N2−7ε0 .

We apply now Lemma 9.9 to A′, B′, G∩ (A′×B′) and 7ε0 in place of A,B,G and
ε0 to find I ′ ⊂ A′ × B′ of cardinality #I ′ & N2−35ε0 such that for all (a, b) ∈ I ′ the
difference a− b can be written roughly at least in N1−21ε0 different ways as a′ − b′
with a′ ∈ A′, b′ ∈ B′.

Now we do some counting. First

#{(a, b, b′) ∈ A′ ×B′ ×B′ : (a, b) ∈ G, (a, b′) ∈ I ′} & N3−43ε0 ,

because there are (up to a constant multiplication) at leastN2−35ε0 choices of (a, b′)
and then at least N1−8ε0 ways to choose b ∈ Ga. On the other hand,

#{(a, b, b′) ∈ A′ ×B′ ×B′ : (a, b) ∈ G, (a, b′) ∈ I ′, b 6∼ b′} . N3−44ε0 ,

because there are at most N2−44ε0 choices of (b, b′) and then at most N ways to
choose a. Combining these we find that

#{(a, b, b′) ∈ A′ ×B′ ×B′ : (a, b) ∈ G, (a, b′) ∈ I ′, b ∼ b′} & N3−43ε0 .

We can write this as∑
(a,b)∈G∩(A′×B′)

#{b′ ∈ B′ : (a, b′) ∈ I ′, b ∼ b′} & N3−43ε0 .

There are at most N2 pairs in the sum, and each summand is at most N . So there
must exist at least N2−44ε0 pairs (a, b) ∈ G ∩ (A′ ×B′) such that

#{b′ ∈ B′ : (a, b′) ∈ I ′, b ∼ b′} & N1−44ε0 .

Therefore we have by the definition of the communicavity

#{(a′, b′) ∈ A′ ×B′ : (a, b′) ∈ I ′, (a′, b), (a′, b′) ∈ I} & N2−99ε0

for these pairs (a, b). Writing a− b = (a− b′)− (a′ − b′) + (a′ − b), it follows from
Lemma 9.9 that for at least N2−44ε0 pairs (a, b),

#{(a1, b1, a2, b2, a3, b3) : a− b = (a1 − b1)− (a2 − b2) + (a3 − b3)} & N5−108ε0 .

For this we would need at least N7−152ε0 = N7−152/153 > N6 different six-tuples
(a1, b1, a2, b2, a3, b3), but there are no more than N6 of them and we have achieved
a contradiction, which proves proves Proposition 9.8, and so also Theorem 9.7.
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10. BILINEAR RESTRICTION

10.1. Bilinear vs. linear restriction. Earlier we studied the restriction inequali-
ties (in the dual form )

(10.1) ‖f̂‖Lq(Rn) . ‖f‖Lp(Sn−1) for f ∈ Lp(Sn−1).

Recall that by f̂ we mean here the Fourier transform of the measure fσn−1. By
Hölder’s inequality we can write this in an equivalent form

(10.2) ‖f̂1f̂2‖Lq/2(Rn) . ‖f1‖Lp(Sn−1)‖f2‖Lp(Sn−1) for f1, f2 ∈ Lp(Sn−1).

As such there is not much gain but if f1 and f2 are supported in different parts of
the sphere, we can get something better. Let us look briefly at the case p = 2, q = 4.
Suppose that the distance between the supports of f1 and f2 is greater than some
absolute constant c0 > 0. By Plancherel’s theorem the inequality

‖f̂1f̂2‖L2(Rn) . ‖f1‖L2(Sn−1)‖f2‖L2(Sn−1)

reduces to the non-Fourier statement

‖(f1σ
n−1) ∗ (f2σ

n−1)‖L2(Rn) . ‖f1‖L2(Sn−1)‖f2‖L2(Sn−1),

which is not very difficult to prove, although not trivial either. On the other hand,
the corresponding linear inequality

‖f̂‖Lq(Rn) . ‖f‖L2(Sn−1)

is the Tomas-Stein theorem and it holds if and only if q ≥ (2n + 2)/(n− 1), recall
Theorem 4.4.

The bilinear restriction problem on the sphere asks for what exponents p and q
the inequality (10.2) holds for fj ∈ Lp(Sn−1), j = 1, 2, or for fj ∈ S, if spt fj ⊂ Sj
and Sj ⊂ Sn−1 with dist(S1, S2) & 1. More generally, S1 and S2 can be some
other type of surfaces (pieces of paraboloids, cones, etc.). The essential condi-
tion required is usually that they are transversal, that is, their normals point to
separated directions.

The point in bilinear estimates is not only, nor mainly, in getting new types
of inequalities, but it is in their applications. In particular, they can be used to
improve the linear estimates, and that is what we are going to discuss here. One
way (and equivalent to others we have met) to state the restriction conjecture is

Conjecture 10.1.

‖f̂‖Lq(Rn) . ‖f‖Lp(Sn−1) for f ∈ Lp(Sn−1), p′ ≤ n− 1

n+ 1
q, q > 2n/(n− 1).

By the Tomas-Stein theorem this is valid for p = 2, q = (2n + 2)/(n − 1), and
whence by interpolation for q ≥ (2n+2)/(n−1). The Kakeya methods developed
by Bourgain and Wolff give some improvements for this, but still better results
can be obtained via bilinear restriction. This is based on two facts: a general result
of Tao, Vargas and Vega from [TVV] of the type ’bilinear restriction estimates
imply linear ones’ and a bilinear restriction theorem of Tao from [Tao1]. The
latter is the following:
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Theorem 10.2. Let Sj ⊂ Sn−1, j = 1, 2, with dist(S1, S2) & 1 and fj ∈ S with
spt fj ⊂ Sj . Then

‖f̂1f̂2‖Lq(Rn) . ‖f1‖L2(S1)‖f2‖L2(S2) for q > (n+ 2)/n.

The lower bound (n+ 2)/2 is the best possible by rather easy examples. In fact,
Tao proved his results for paraboloids, but as he says in the paper, the method
works for more general surfaces including spheres. The class of surfaces was
further extended by Lee in [Lee]. The proof is long and complicated, we shall
discuss some parts of it a little later. First we look at the result of Tao, Vargas and
Vega:

Theorem 10.3. Let 1 < p, q <∞, q > 2n/(n− 1) and p′ < n−1
n+1

q. If the estimate

(10.3) ‖f̂1f̂2‖Lq/2(Rn) . ‖f1‖Lp(S1)‖f2‖Lp(S2),

holds for transversal surfaces S1 and S2, then also the estimate

‖f̂‖Lq(Rn) . ‖f‖Lp(Sn−1)

holds.

Concerning the class of surfaces involved, the formulation here is rather un-
precise, see [TVV] for the precise one. In the proof one needs the bilinear esti-
mates for a class of surfaces which are obtained from spherical caps via affine
transformations. The result in [TVV] also includes the case p′ = n−1

n+1
q.

Combining the last two theorems (and remembering the above remark on [TVV]),
we obtain

Theorem 10.4. The restriction conjecture holds for q > 2(n+ 2)/n:

‖f̂‖Lq(Rn) . ‖f‖Lp(Sn−1) for f ∈ Lp(Sn−1), p′ ≤ n− 1

n+ 1
q, q > 2(n+ 2)/n.

We now sketch the proof of Theorem 10.3. We only consider the case where
q ≤ 4. This is actually enough by the Tomas-Stein theorem and the fact that the
restriction conjecture is valid in the plane.

Suppose f has support in a part of Sn−1 which has a parametrization (v, ϕ(v)), v ∈
Q, where Q is a cube in Rn−1 and ϕ > 0. Then we can write the Fourier transform
of f (forgetting the Jacobian term)

f̂(x, t) =

∫
Q

e−2πi(x·v+tϕ(v))f(v, ϕ(v))dv, (x, t) ∈ Rn−1 × R.

Next we write
‖f̂‖2

Lq(Rn) = ‖(f̂)2‖Lq/2(Rn),

and

(f̂)2(x, t) =

∫
Q

∫
Q

e−2πi(x·v+tϕ(v))f(v, ϕ(v))e−2πi(x·w+tϕ(w))f(w,ϕ(w))dvdw.

We introduce a Whitney decomposition of Q × Q \ ∆,∆ = {(v, w) : v = w},
into disjoint cubes I × J ∈ Qk, k = 1, 2, . . . , where I and J are dyadic subcubes



66 PERTTI MATTILA

of Q such that diam(I) ≈ diam(J) ≈ dist(I, J) ≈ 2−k when I × J ∈ Qk. Let
fI(v, ϕ(v)) = f(v, ϕ(v))χI(v). Then we have

(10.4) ‖f̂‖2
Lq(Rn) = ‖

∑
k

∑
I×J∈Qk

f̂I f̂J‖Lq/2(Rn) ≤
∑
k

‖
∑

I×J∈Qk

f̂I f̂J‖Lq/2(Rn).

The inverse transform of f̂I f̂J is the convolution fI ∗ fJ . We have for its support

spt fI ∗ fJ ⊂ S(I, J) := {(v, t) : v ∈ I + J, 0 ≤ t ≤ 2}.

Here I+J lies in a C2−k-neighbourhood of I+ I for some absolute constant C, so
the sets S(I, J), I × J ∈ Qk, have bounded overlap for each fixed k. Choose
smooth compactly supported functions ψ(I, J) ≤ 1 such that ψ(I, J) = 1 on
S(I, J), ‖F(ψ(I, J))‖1 ≈ 1, and

(10.5)
∑

I×J∈Qk

χsptψ(I,J) . 1,

and define the operators TI,J by

TI,Jg = F(ψ(I, J)ǧ).

Using (10.5) Plancherel’s theorem gives the L2-estimate for arbitrary L2-functions
gI,J ,

‖
∑

I×J∈Qk

TI,JgI,J‖2
L2(Rn) .

∑
I×J∈Qk

‖gI,J‖2
L2(Rn).

The L1-estimate

‖
∑

I×J∈Qk

TI,JgI,J‖L1(Rn) .
∑

I×J∈Qk

‖gI,J‖L1(Rn)

for arbitrary L1-functions gI,J follows by ‖TI,JgI,J‖1 . ‖gI,J‖1 and triangle in-
equality. These two inequalities tell us that the operator Tk, Tk(gI,J) =

∑
I×J∈Qk TI,JgI,J ,

is bounded from Lr(Rn, lr) to Lr(Rn) for r = 1 and r = 2. By the Riesz-Thorin the-
orem interpolation theorem for such operators, see, e.g., [G1], Tk is also bounded
from Lq/2(Rn, lq/2) to Lq/2(Rn), since 1 ≤ q/2 ≤ 2 (all of course with norms inde-
pendent of k). Thus

‖
∑

I×J∈Qk

TI,JgI,J‖q/2Lq/2(Rn)
.

∑
I×J∈Qk

‖gI,J‖q/2Lq/2(Rn)
.

Observe now that
TI,J(f̂I f̂J) = f̂I f̂J

whence

(10.6) ‖
∑

I×J∈Qk

f̂I f̂J‖q/2Lq/2(Rn)
.

∑
I×J∈Qk

‖f̂I f̂J‖q/2Lq/2(Rn)
.

In order to apply our bilinear assumption we have to scale fI and fJ back to the
unit scale. Let I × J ∈ Qk. After a translation and rotation we may assume
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that I ∪ J ⊂ B(0, C2−k) ⊂ Rn−1. Then the appropriate scaling is (v, ϕ(v)) 7→
(2kv, 22kϕ(v)) := (w,ψ(w)). Define, with this notation,

gI(w,ψ(w)) = fI(v, ϕ(v)), gJ(w,ψ(w)) = fJ(v, ϕ(v)).

The change of variable formulas give (ĝI and ĝJ are now of course with respect to
the graph of ψ)

f̂I(x, t) = 2−k(n−1)ĝI(2
−kx, 2−2kt), f̂J(x, t) = 2−k(n−1)ĝJ(2−kx, 2−2kt),∫

|f̂I f̂J |q/2 = 2−k(q(n−1)−(n+1))

∫
|ĝI ĝJ |q/2,∫

|gI |p = 2k(n−1)

∫
|fI |p,

∫
|gI |p = 2k(n−1)

∫
|fI |p.

The vaguely stated assumption of the theorem includes that (10.3) holds for a
class of surfaces containing the graph of ψ (and Tao’s Theorem 10.2 also includes
these surfaces). Therefore

‖ĝI ĝJ‖q/2Lq/2(Rn)
. ‖gI‖q/2Lp(Sn−1)‖gJ‖

q/2

Lp(Sn−1).

Combining these statements we find

‖f̂I f̂J‖q/2Lq/2(Rn)
. 2

−k(
(n−1)

p′ −
(n+1)
q

)q‖fI‖q/2Lp(Sn−1)‖fJ‖
q/2

Lp(Sn−1).

Recalling (10.4), inserting the last estimate into (10.6), and using the fact that for
each I there are only boundedly many J ’s such that I × J ∈ Qk, we obtain

‖f̂‖2
Lq(Rn) .

∑
k

(
∑

I×J∈Qk

2
−k(

(n−1)

p′ −
(n+1)
q

)q‖fI‖q/2Lp(Sn−1)‖fJ‖
q/2

Lp(Sn−1))
2/q

.
∑
k

2
−2k(

(n−1)

p′ −
(n+1)
q

)
(
∑
I∈Dk

‖fI‖qLp(Sn−1))
2/q.

The summation in I is over all dyadic subcubes ofQ of side-length 2−k. The factor
(n−1)
p′
− (n+1)

q
is positive by our assumptions. So the theorem follows if we have∑

I∈Dk

‖fI‖qLp(Sn−1) ≤ ‖f‖
q
Lp(Sn−1).

This is true if q/p ≥ 1. Choosing p′ sufficiently close to n−1
n+1

q we do have q/p ≥ 1

due to the assumption q > 2n/(n−1); if p′ = n−1
n+1

q, q/p = (n−1)q−n−1
n−1

> 1. Moreover,
getting the result for some p gives it also for larger p (and smaller p′).

10.2. Localization. We now proceed towards the proof of Tao’s Theorem 10.2.
The main ideas are due to Wolff who proved first the analogous sharp result for
the cone. The first step is to reduce to local estimates.

The following theorem is due to Tao and Vargas, see [TV]. There is also a ver-
sion for one function which was proved earlier by Bourgain. The relations be-
tween p and q are probably not sharp, but all that is really needed is that if the
assumption holds for all α > 0, then the assertion holds for all p > q.
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Theorem 10.5. Let Sj ⊂ Sn−1, j = 1, 2, with dist(S1, S2) & 1 and fj ∈ S with
spt fj ⊂ Sj . Suppose that 1 < p < n+1

n−1
, α > 0 and 1

p
(1 + 4α

n−1
) < 1

q
+ 2α

n+1
. If

(10.7) ||f̂1f̂2||Lq(B(x,R)) .α R
α||f1||2||f ||2 for x ∈ Rn, R > 1, fj ∈ L2(Sj), j = 1, 2,

then

(10.8) ||f̂1f̂2||Lp(Rn) . ||f1||2||f ||2 for fj ∈ L2(Sj), j = 1, 2.

From now on we shall assume that Sj is the graph of a smooth function ϕj . We
shall denote by A(r) the r-neighbourhood {x : dist(x, a) < r} of a set A.

The Fourier transform of the surface measure σn−1 satisfies

σ̂n−1(x) . (1 + |x|)−β, x ∈ Rn, where β = (n− 1)/2.

Our assumptions on p and q in terms of β read

1 < p <
β + 1

β
,
1

p
(1 +

2α

β
) <

1

q
+

α

1 + β
.

The proof of Theorem 10.5 will be based on three lemmas. The first of these
says that the hypothesis (10.7) yields a similar statement if the functions live in
neighbourhoods of the surface.

Lemma 10.6. (a) If C is a positive number and µ a Borel measure on Rn such that

(10.9) ||f̂ ||Lq(µ) ≤ C||f ||2 for f ∈ L2(Sj), j = 1, 2,

then for all r > 0,

(10.10) ||f̂ ||Lq(µ) . C
√
r||f ||2 for f ∈ L2(Sj(r)),

where Sj(r) is the r-neighborhood of Sj .
(b) If C is a positive number and µ a Borel measure on Rn such that

(10.11) ||f̂1f̂2||Lq(µ) ≤ C||f1||2||f2||2 for fj ∈ L2(Sj), j = 1, 2,

then for all r > 0,

(10.12) ||f̂1f̂2||Lq(µ) . Cr||f1||2||f2||2 for f1 ∈ L2(S1(r)), f2 ∈ L2(S2(r)).

Proof. Let Sj,t = {(x, ϕj(x) + t) : x ∈ Vj} and Srj = ∪|t|<rSj,t. It is enough to
prove the lemma for Srj in place of Sj(r) since Sj(r/C1) ⊂ Srj ⊂ Sj(C1r) for some
constant C1.

Let fj ∈ L2(Srj ) and denote fj,t(z) = fj(x, ϕj(x) + t) for z = (x, ϕj(x)) ∈ Sj .
Then by Fubini’s theorem,

|f̂j(x, t)| = |
∫ ∫

e−2πi(x·y+ts)fj(y, s)dsdy| = |
∫ r

−r

∫
e−2πi(x·y+t(u+ϕj(y)))fj,u(y, ϕj(y))dydu|

= |
∫ r

−r
e−2πituf̂j,u(x, t)du| ≤

∫ r

−r
|f̂j,u(x, t)|du.
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Thus using Minkowski’s integral inequality, (10.11), Schwartz’s inequality and
Fubini’s theorem,

||f̂1f̂2||Lq(µ) ≤ (

∫
|
∫ r

−r
f̂1,u(z)du

∫ r

−r
f̂2,v(z)dv|qdµz)1/q

= (

∫
|
∫ r

−r

∫ r

−r
f̂1,u(z)f̂2,v(z)dudv|qdµz)1/q

≤
∫ r

−r

∫ r

−r
‖f̂1,uf̂2,v‖Lq(µ)dudv

≤ C

∫ r

−r

∫ r

−r
||f1,u||2||f2,v||2dudv

≤ C
√

2r(

∫ r

−r

∫
S1

|f1,u|2du)1/2
√

2r(

∫ r

−r

∫
S2

|f2,v|2dv)1/2

≈ 2Cr||f1||2||f2||2.
�

The second lemma shows that a local hypothesis, namely (10.13), gives a global
estimate for functions living in neighbourhoods of the surfaces Sj .

Lemma 10.7. Let C and R be positive numbers such that

(10.13) ||f̂1f̂2||Lq(B(x,R)) . C||f1||2||f ||2 for x ∈ Rn, fj ∈ L2(Sj(2/R)), j = 1, 2,

then

(10.14) ||f̂1f̂2||Lq(Rn) . C||f1||2||f2||2 for fj ∈ L2(Sj(1/R)), j = 1, 2.

Proof. Let fj ∈ L2(Sj(1/R)), j = 1, 2. Let ψ ∈ S be such that 0 ≤ ψ ≤ 1, ψ ≈ 1

on B(0, 1) and ψ̌ ⊂ B(0, 1). Cover Rn with balls B(xk, R/2), k = 1, 2, . . . , such
that

∑
k χB(xk,R) ≈ 1. Define ψk(x) = ψ((x − xk)/R). Then

∑
k ψk ≈

∑
k ψ

2q
k ≈∑

k χB(xk,R)ψ
2q
k ≈ 1. Moreover spt ψ̌k ⊂ B(0, 1/R), whence spt ψ̌k ∗ fj ⊂ Sj(2/R).

Applying (10.13) and Plancherel’s theorem, we obtain

‖ψ2
kf̂1f̂2‖Lq(B(xk,R)) = ‖̂̌ψk ∗ f1

̂̌ψk ∗ f2‖Lq(B(xk,R))

. C‖ψ̌k ∗ f1‖2‖ψ̌k ∗ f2‖2 = C‖ψkf̂1‖2‖ψkf̂2‖2.

Summing over k we get by Schwartz’s inequality,

‖f̂1f̂2‖Lq(Rn) .
∑
k

‖χB(xk,R)ψ
2
kf̂1f̂2‖Lq(Rn)

= ‖ψ2
kf̂1f̂2‖Lq(B(xk,R)) . C

∑
k

‖ψkf̂1‖2‖ψkf̂2‖2

≤ C(
∑
k

‖ψkf̂1‖2
2)1/2(

∑
k

‖ψkf̂2‖2
2)1/2

≈ C‖f̂1‖2‖f̂2‖2.

�
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Corollary 10.8. Assuming (10.7) we have for all R > 1,

(10.15) ||f̂1f̂2||Lq(Rn) . Rα−1||f1||2||f2||2 for fj ∈ L2(Sj(1/R)), j = 1, 2.

Proof. Applying the assumption (10.7) and Lemma 10.6 with µ = LnbB(x, r) we
have

||f̂1f̂2||Lq(B(x,R)) . Rα−1||f1||2||f ||2 for x ∈ Rn, fj ∈ L2(Sj(2/R)), j = 1, 2.

Hence the corollary follows by Lemma 10.7. �

The third lemma tells us how estimates on functions defined in neighborhoods
of the surfaces Sj lead to estimates for functions defined on the surfaces them-
selves.

Lemma 10.9. For any F ∈ L∞ ∩ L1 with ‖F‖∞ ≤ 1 and any N,R > 1,

(10.16) |
∫
F ĝ1ĝ2|2 .N R−β‖F‖2

2β+2
β+2

+
∞∑
k=0

R2−kN‖F̂ ĝ2‖2
L2(S1(2k/R)),

for all gj ∈ L2(Sj) with ‖gj‖L2(Sj) ≤ 1, and

(10.17) |
∫
F ĝ1ĥ2|2 .N λR−β−1‖F‖2

2β+2
β+2

+
∞∑
k=0

R2−kN‖F̂ ĥ2‖2
L2(S1(2k/R)),

for all g1 ∈ L2(S1), h2 ∈ L2(S2(λ/R)), λ > 0 with ‖g1‖L2(S1) ≤ 1, ‖h2‖2 ≤ 1.

Proof. By the product formula, Schwartz’s inequality and Plancherel’s theorem, ,

|
∫
F ĝ1ĝ2|2 = |

∫
F̂ ĝ2g1dσ

n−1|2

≤ ‖F̂ ĝ2‖2
L2(S1)‖g1‖2

L2(S1) ≤
∫

((F ĝ2) ∗ σ̂n−1)F ĝ2.

By Hölder’s inequality and the Stein-Tomas restriction theorem, Theorem 4.4,

(10.18) ‖F ĝ2‖1 ≤ ‖F‖ 2β+2
β+2
‖ĝ2‖ 2β+2

β
. ‖F‖ 2β+2

β+2
.

Choose ϕ ∈ S such that ϕ = 1 on B(1), ϕ vanishes outside B(2) and write σn−1 as

σn−1 = τ1 + τ2 with τ̂1(x) = ϕ(x/R)σ̂1(x).

Then
‖τ̂2‖∞ . R−β,

and so by (10.18)

(10.19)
∫

((F ĝ2) ∗ τ̂2)F ĝ2 ≤ ‖τ̂2‖∞‖F ĝ2‖2
1 ≤ R−β‖F‖2

2β+2
β+2

.

Next we estimate |
∫

((F ĝ2)∗τ̂1)F ĝ2|. By Plancherel’s theorem (note that τ1 ∈ L2)

|
∫

((F ĝ2) ∗ τ̂1)F ĝ2| .
∫
|F̂ ĝ2|2|τ1|.
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Using the rapid decay of ϕ̂ one checks easily that

|τ1(x)| = |Rn

∫
ϕ̂(R(y − x))dσ1y| .N R(1 + d(x, S1))−N .

Hence

|
∫

((F ĝ2) ∗ τ̂1)F ĝ2| .N
∞∑
k=0

R2−kN‖F̂ ĝ2‖2
L2(S1(2k/R)).

This proves (10.16). To prove (10.17) we argue in the same way but use Stein-
Tomas theorem in combination with Lemma 10.6(a) to have

‖ĥ2‖ 2β+2
β
. λ1/2R−1/2.

�

In order to complete the proof of Theorem 10.5 we shall prove that for any
measurable set A ⊂ Rn with 1 ≤ Ln(A) <∞,

(10.20) ||χAĝ1ĝ2||L1(Rn) . Ln(A)1/p′ ||g1||2||g||2 for gj ∈ L2(Sj), j = 1, 2.

Let us first see how this implies the theorem. Fix fj ∈ L2(Sj), j = 1, 2, with
‖fj‖L2(Sj) = 1. Apply (10.20) with

A = {x : |f̂1f̂2(x)| > λ}, λ > 0.

Note that Ln(A) < ∞ because f̂j ∈ Lp0 for some p0 < ∞ by the Stein-Tomas
restriction theorem. Then by (10.20), if Ln(A) ≥ 1,

λLn(A) ≤ ||χAf̂1f̂2||L1(Ln) . Ln(A)1/p′

which gives

Ln({x : |f̂1f̂2(x)| > λ}) . max{λ−p, 1}.
Combining this weak type inequality with the trivial inequality

‖f̂1f̂2‖∞ . 1,

(10.8) follows by interpolation.
Applying Lemma 10.9 with N = 3 and choosing (notice that the exponent be-

low is positive as 1 < p < β+1
β

)

(10.21) R = Ln(A)
1
β

(β+2
β+1
− 2
p′ ).

we obtain

|
∫
χAĝ1ĝ2|2 . R−βLn(A)

β+2
β+1 +

∞∑
k=0

R2−3k‖χ̂Aĝ2‖2
L2(S1(2k/R))

= Ln(A)2/p′ +
∞∑
k=0

R2−3k‖χ̂Aĝ2‖2
L2(S1(2k/R)).
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Here

‖χ̂Aĝ2‖L2(S1(2k/R)) = sup
‖h1,k‖L2(S1(2

k/R))
≤1

∫
χ̂Aĝ2h1,k

= sup
‖|h1,k‖L2(S1(2

k/R))
≤1

∫
χAĝ2ĥ1,k.

We can repeat the above argument with g2 playing the role of g1 and h1,k playing
the role of g2. Now h1,k is in L2(S1(2k/R)) with norm at most 1 and we have by
(10.17)

|
∫
χAĝ2ĥ1,k|2 . 2kR−1Ln(A)2/p′ +

∞∑
l=0

R2−3l‖χ̂Aĥ1,k‖2
L2(S1(2l/R));

Again

‖χ̂Aĥ1,k‖L2(S1(2lR)) = sup
‖h2,l‖L2(S2(2

l/R))
≤1

∫
χ̂Aĥ1,kh2,l

≤ sup
‖h2,l‖L2(S2(2

l/R))
≤1

‖χAĥ1,kĥ2,l‖L1(Rn).

By Hölder’s inequality

‖χAĥ1,kĥ2,l‖L1(Rn) ≤ Ln(A)1/q′‖ĥ1,kĥ2,l‖Lq(Rn).

By Corollary 10.8 we have for k ≤ l,

‖ĥ1,kĥ2,l‖Lq(Rn) . Rα−12l.

Combining these inequalities,

‖χAĝ1ĝ2‖2
L1(Rn)

. Ln(A)2/p′ +
∞∑
k=0

R2−3k

∞∑
l=0

R2−3lLn(A)2/q′R2α−222l

≈ Ln(A)2/p′ + Ln(A)2/q′R2α.

Recalling how we chose R in (10.21) we see that

Ln(A)2/q′R2α = Ln(A)
2/q′+ 2α

β
(β+2
β+1
− 2
p′ ).

Since

2/q′ +
2α

β
(
β + 2

β + 1
− 2

p′
) < 2/p′

the desired inequality (10.20) follows and the proof of the theorem is complete.
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10.3. Induction on scales. The second crucial idea is an induction on scales ar-
gument due to Wolff. That is, (10.7) is reduced to

Proposition 10.10. There is a constant c > 0 such the following holds. Suppose
that (10.7) holds for some α > 0:

(10.22) ||f̂1f̂2||Lq(B(x,R)) .α R
α||f1||2||f2||2 for x ∈ Rn, R > 1, fj ∈ L2(Sj), j = 1, 2.

Then for all 0 < δ, ε < 1 there exists a constant C such that
(10.23)
||f̂1f̂2||Lq(B(x,R)) ≤ CRmax{α(1−δ),cδ}+ε||f1||2||f2||2, x ∈ Rn, R > 1, spt fj ⊂ Sj.

Then Proposition 10.10 implies (10.7) for all α > 0. To see this note that ||f̂j||∞ .
||fj||2 by Schwartz’s inequality, whence (10.7) holds for α = α0 = s/q. Fix ε > 0
and define

αj+1 = cαj/(αj + c) + ε, j = 0, 1, 2, . . . ,

Suppose (10.7) holds for α = αj for some j. Apply Proposition 10.10 with δ =
δj = αj/(αj + c). Then

max{αj(1− δ), cδ} = cαj/(αj + c),

and it follows that (10.7) holds for α = αj+1. It is easy to check that

αj → (ε+
√
ε2 + 4cε)/2.

Since we can choose ε arbitrarily small, (10.7) holds for all α > 0.

10.4. Wavepacket decomposition. The proof of Proposition 10.10, which is the
core of the whole argument, uses the third basic tool: the wavepacket decomposi-
tion. Fix R > 1 and let again Sj = {(v, ϕj(v)) : v ∈ Vj} ⊂ Sn−1, Vj ⊂ Rn−1, j = 1, 2,
be such that dist(S1, S2) & 1 and let fj ∈ L2(Sj). The wavepacket decomposition
allows us to write f̂j as a sum of functions py,vj which together with their Fourier
transforms are well localized:

(10.24) f̂j(x, t) = Σwjpwj(x, t), j = 1, 2.

The indices wj (where w1 is always related to S1 and w2 to S2) are of the form
(yj, vj) where vj’s run through a 1/

√
R-separated set in Vj and yj’s run through

a
√
R-separated set in Rn−1. The functions pwj are essentially supported in the

tubes (that is, decay very fast off them)

Twj = {(x, t) : |t| ≤ R, |x− (yj + t∇ϕj(vj))| ≤ R1/2}

and their Fourier transforms have supports in Sj ∩ B((vj, ϕj(vj)), 2/
√
R). The

transversality assumptions on S1 and S2 guarantee that any two tubes Tw1 and
Tw2 are transversal.

The proof of the wavepacket decomposition involves several technicalities, but
in principle it is not very difficult. Here are the main ideas: First find (using the
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so-called Poisson summation formula) the C∞-functions η and ψ on Rn−1 such
that

spt η̂ ⊂ B(0, 1), sptψ ⊂ B(0, 1),
∑

k∈Zn−1

η(x− k) =
∑

k∈Zn−1

ψ(x− k) = 1 for x ∈ Rn−1.

Define for yj ∈ R1/2Zn−1 and vj ∈ R−1/2Zn−1 ∩ Vj ,

ηyj(x) = η(
x+ yj√

R
), ψvj(v) = ψ(

√
R(v − vj)), x, v ∈ Rn−1.

Then

η̂yj(v) = R(n−1)/2e2πiv·yj η̂(
√
Rv), spt η̂yj ⊂ B(0, 1/

√
R), sptψvj ⊂ B(vj, 1/

√
R).

Defining gj on Vj by gj(v) = fj(v, ϕ(v), we have∑
yj

ηyj = 1 and gj =
∑
vj

ψvjgj.

Thus
gj =

∑
vj ,yj

F−1(ψ̂vjgjηyj).

Now the functions py,vj

pyj ,vj(x, t) =

∫
Vj

e2πi(x·v−tϕj(v))F−1(ψ̂vjgjηyj)(v)dv, (x, t) ∈ Rn−1 × R,

have the required properties. The decomposition f̂j(x, t) = Σwjpwj(x, t) and the
fact ŝpt pwj ⊂ Sj ∩ B((vj, ϕj(vj)), 2/

√
R) are easily checked. The fast decay of pwj

outside Twj follows by stationary phase estimates, more precisely, by Theorem
3.4.

10.5. The final geometric and combinatorial estimates. In order to prove Propo-
sition 10.2, and thus complete the proof of Theorem 10.10, we need, by (10.24), the
estimate

‖Σwjpw1pw2‖Lq(Q(R)) . Rε(R(1−δ)α +Rcδ).

Here Q(R) is the cube of sidelength R centered at the origin. Some pigeonholing
arguments and normalizations of the functions pwj reduce this to

‖Σwj∈Wj
pw1pw2‖Lq(Q(R)) . Rε(R(1−δ)α +Rcδ)

√
]W1]W2

for arbitrary subsets Wj of the index sets under the conditions

‖pwj‖∞ . R(1−n)/4.

Next the cube Q(R) is decomposed into cubes Q ∈ Q of side-length R1−δ, a rela-
tion wj ∼ Q is defined and the above sum is split to the local part; w1 ∼ Q and
w2 ∼ Q, and the far-away part; w1 6∼ Q or w2 6∼ Q. Local here means that for a
given wj the cubes Q with wj ∼ Q are contained is some cube with side-length
≈ R1−δ which allows us to use the induction hypothesis (10.22) to get the upper
bound RεR(1−δ)α√]W1]W2 for this part of the sum.
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The far-away part will be estimated by RεRcδ
√
]W1]W2. First there is the L1-

estimate

‖
∑

w1∈W1,w2∈W2,w1 6∼Q or w2 6∼Q

pw1pw2||L1(Q) . R(#W1)1/2(#W2)1/2,

which follows by some L2-estimates for the functions pwj . Hence by interpolation
the required estimate is reduced to showing that for every Q ∈ Q,

||
∑

w1∈W1,w2∈W2,w1 6∼Q or w2 6∼Q

pw1pw2||L2(Q) . Rcδ−(n−2)/4(#W1)1/2(#W2)1/2.

Next Q(R) is split into cubes P ∈ P of side-length
√
R. We are lead show that for

any Q ∈ Q,∑
P∈P,P⊂2Q

||
∑

RδP∩Twj 6=∅,w1 6∼Q or w2 6∼Q

pw1pw2||2L2(P ) . Rcδ−(n−2)/2(#W1)(#W2).

The reduction to RδP ∩ Twj 6= ∅ follows from the fast decay of pwj outside Twj .
The far-away porperty involves that we can sum over such wj that when P0 ⊂ 2Q
there are many P ∈ P for which RδP ∩ Twj 6= ∅. Writing

||
∑

w1∈U1,w2∈U2

pw1pw2 ||22 =
∑

w1,w′1∈U1,w′2∈U2

∫
pw1pw2pw′1pw′2 ,

and ∫
pw1pw2pw′1pw′2 =

∫
p̂w1pw2 p̂w′1pw′2 =

∫
(p̂w1 ∗ p̂w2)p̂w′1 ∗ p̂w′2 ,

the support properties p̂wj ’s are used to estimate

|
∫
pw1pw2pw′1pw′2| . R−(n−2)/2.

Furthermore, the support properties yield that if we fixw1 andw′2 and ifw′1 is such
that

∫
pw1pw2pw′1pw′2 6= 0 for some w2, then v′1 lies in an R−1/2-neighborhood of a

smooth hypersurface depending on w1 and w′2. The geometry of this surface is
well understood because of the initial transversality and curvature assumptions
for the surfaces Sj . For the functions ϕj they require that the directions of the
gradients are separated and also a non-degeneracy condition of the Hessians.
These and the transversality of the tubes Tw1 and Tw2 lead to good estimates on
the number of indices for which

∫
pw1pw2pw′1pw′2 6= 0 completing the proof.

10.6. Multilinear restriction and improvements by Bourgain and Guth. In [BCT]
Bennet, Carbery and Tao proved multilinear restriction and Kakeya estimates.
For example, in three dimension they proved

‖f̂1f̂2f̂3‖Lq(R3) . ‖f1‖L∞(S1)‖f2‖L∞(S2)‖f3‖L∞(S3)

provided q > 3 and the normals n1, n2, n3 of the surfaces S1, S2, S3 are never close
to a two-dimensional plane. Bourgain and Guth used this, together with Kakeya
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arguments, to improve the restriction estimates to

‖f̂‖Lq(R3) . ‖f‖L∞(S2) for f ∈ L∞(S2), p > 33/10.

Recall that Tao’s bilinear estimate and Theorem 10.4 gave this for p > 10/3 so
there is an improvement by 1/30. Both papers deal with many other aspects and
in general dimensions.
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