Matematiikan ja tilastotieteen laitos Topics in geometric Fourier analysis Exercise 5

Let d(n) be the infimum of the Hausdorff dimension of Besicovitch sets in \mathbb{R}^n .

1. Show that $d(n) \leq d(n+1)$. Hint: Consider projections.

2. Show that $d(m+n) \leq d(m) + n$.

3. Prove that there exists a Borel subset of \mathbb{R}^2 with positive Lebesgue measure whose orthogonal projections on all lines have empty interior. Hint: Consider Besicovitch sets.

4. Peres and Schlag have proved that if $B \subset \mathbb{R}^n$ is a Borel set with Hausdorff dimension dim B > 2k, then almost all projections $P_V(B), V \in G(n, k)$, have non-empty interior. Use this to get another proof for Falconer's theorem 8.3.

5. Prove that m_{δ} is not an L^p -multiplier if $p \leq \frac{2n}{n+1+2\delta}$ or $p \geq \frac{2n}{n-1-2\delta}$. You can of course use the kernel K_{δ} and its asymptotic properties.