Matematiikan ja tilastotieteen laitos

Topics in geometric Fourier analysis

Exercise 4

1. Prove that the $L^{2}-L^{2}$-operator norm of the multiplier operator T_{m} is $\|m\|_{\infty}$.
2. Prove that the multiplier operator T_{m} is bounded $L^{p} \rightarrow L^{p}$ for $1<p<\infty$ if $m \in \mathcal{S}$.
3. Prove that if P is a polyhedral domain, then $T_{\chi_{P}}: L^{p} \rightarrow L^{p}$ is bounded for $1<p<\infty$.
4. Prove that the operator norms of $T_{B(0,1)}$ and $T_{B(x, r)}$ for any $x \in \mathbb{R}^{n}, r>0$, are equal.
5. Prove that if the characteristic function of the unit ball is an L^{p} - multiplier for some p in some \mathbb{R}^{n}, then

$$
f(x)=\lim _{R \rightarrow \infty} \int_{B(0, R)} e^{2 \pi i x \xi} \hat{f}(\xi) d \xi \text { as } R \rightarrow \infty \text { in } L^{p}\left(\mathbb{R}^{n}\right) \text { sense? }
$$

6. Verify the formula

$$
T_{j}^{r} f(x)=e^{2 \pi i r v_{j} \cdot x} T_{r}\left(e^{-2 \pi i r v_{j} \cdot \xi} f\right)(x),
$$

in the proof of Lemma 7.8.

