Matematiikan ja tilastotieteen laitos Topics in geometric Fourier analysis Exercise 3 17.2.2012

1.Let $\mu_j, j = 1, 2$, be finite Borel measures with compact support in \mathbb{R}^{n_j} and let $\mu = \mu_1 \times \mu_2$ be the product measure in $\mathbb{R}^{n_1+n_2}$. Prove that the restriction estimate

$$||\hat{f}||_{L^{p}(\mu)} \leq C_{p,q}||f||_{q}, f \in \mathcal{S}(\mathbb{R}^{n_{1}+n_{2}}),$$

is equivalent with that the analogous estimates hold for both μ_1 and μ_2 (with the same p and q). Conclude that the restriction theory for the sphere in \mathbb{R}^n is essentially the same as for the cylinder $S^{n-1} \times [0, 1]$ in \mathbb{R}^{n+1} .

2. Let μ be a finite Borel measure with compact support in \mathbb{R}^n . Prove that if the restriction estimate

$$||f||_{L^p(\mu)} \le C_{p,q}||f||_q, \ f \in \mathcal{S}(\mathbb{R}^n),$$

holds, then it holds for all p_1, q_1 with $1 \le p_1 \le p$ and $1 \le q_1 \le q$.

Hint: Use the fact that $\hat{f} = f * \phi$ on the support of μ if $\phi \in S$ and $\hat{\phi}$ equals 1 on the support of μ .

3.Let μ be a finite Borel measure with compact support in \mathbb{R}^n , $T : \mathbb{R}^n \to \mathbb{R}^n$ an affine bijection $(Tx = Lx + a \text{ with } L \text{ a linear bijection and } a \in \mathbb{R}^n)$. Let ν be the push-forward of μ under T; $\int g d\nu = \int g \circ T d\mu$. Show that if the restriction estimate as in Exercise 2 holds for μ it holds also for ν .

4. Let $R \subset \mathbb{R}^2$ be a rectangle with side-lengths r_1 and r_2 and ϕ a C^{∞} -function with support in R. Find a 'dual' rectangle \tilde{R} of R with side-lengths $1/r_1$ and $1/r_2$ such that $\hat{\phi}$ decays very fast (what should this mean?) outside \tilde{R} .