
Hamilton-Bellman-Jacobi equation

1 Non-homogeneous backward Kolmogorov equation

Let us consider a time continuous Markov process {ξt , t ∈ [to, tf ]}

ξt : Ω× [to, tf ] 7→ D (1)

with generator L

Lx = b(x, t) · ∂x +
1

2
A(x, t) : ∂x ⊗ ∂x (2)

Let now ψ

ψ : Rd 7→ R (3)

and

L : Rd × R+ 7→ R (4)

some smooth functions. Let us then consider the functional

V (x, t;T ) = Ex,t

{∫ T

t
dt1 L(ξ1, t1) + ψ(ξT )

}
(5)

where as usual

Ex,t {·} := E {· | ξt = x} (6)

It is instructive to write (5) explicitly as a functional of the transition probability of the process:

V (x, t;T ) =

∫ T

t
dt2

∫
Rd

dx2 L(x2, t2) p(x2, t2|x, t) +

∫
Rd

ddx2 ψ(x2) p(x2, T |x, t) (7)

Proposition 1.1. The function V defined by (7) satisfies the backward non-homogeneous Kolmogorov equation

(∂t + Lx)V (x, t;T ) + L(x, t) = 0 (8a)

V (x, T ;T ) = ψ(x) (8b)

Proof. The proof follows by direct calculation:

∂tV (x, t;T ) = −
∫
Rd

dx2 L(x2, t2) p(x2, t|x, t)

+

∫ T

t
dt2

∫
Rd

dx2 L(x2, t2) (∂tp)(x2, t2|x, t) +

∫
Rd

ddx2 ψ(x2) (∂tp)(x2, T |x, t) (9)
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The transition probability as a function of the conditioning event satisfies

(∂t + Lx) p(·|x, t) = 0 (10a)

lim
t↑t2

p(x2, t2|x, t) = δ(d)(x2 − x) (10b)

Hence we obtain

∂tV (x, t;T ) = −L(x, t)

−Lx
{∫ T

t
dt2

∫
Rd

dx2 L(x2, t2) p(x2, t2|x, t) +

∫
Rd

ddx2 ψ(x2) p(x2, T |x, t)
}

(11)

which yields the claim.

For any t ≤ t1 ≤ T we can re-write (7) expression as

V (x, t;T ) =

∫ t1

t
dt2

∫
Rd

dx2 L(x2, t2) p(x2, t2|x, t) +

∫
Rd

ddx1 V (x1, t1;T ) p(x1, t1|x, t) (12)

which has the same form as (7) on a shorter time horizon t1 − t and with the replacement

ψ(·) 7→ V (·, t1;T ) (13)

As the left hand side in (12) does not depend upon t1 we must have that

0 = ∂t1V (x, t;T ) =

∫
Rd

dx1 L(x1, t1) p(x1, t1|x, t)

+

∫
Rd

ddx1 [(∂t1V )(x1, t1;T ) p(x1, t1|x, t) + V (x1, t1;T ) (∂t1p)(x1, t1|x, t)] (14)

The transition probability satisfies as a function of the conditioned even the forward Kolmogorov (Fokker-Planck)
equation

[(∂t − L†
x)p](x, t|·) = 0 (15)

As a consequence a spatial integration by parts in the second integral gives

0 = ∂t1V (x, t;T ) =

∫
Rd

ddx1 p(x1, t1|x, t) [L(x1, t1) + ∂t1 + Lx1 ]V (x1, t1) (16)

which is self-consistently verified owing to (8). A further consequence is

Proposition 1.2. Let V : Rd × R+ 7→ R solution of (8) such that

E

∫ t

to

dt1 A(ξt) : (∂ξtV )⊗ (∂ξtV ) <∞ (17)

then the stochastic process

µt = V (ξt, t) +

∫ t

to

dt1 L(ξt1 , t1) (18)

is a martingale for all [to, t].
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By Ito lemma we have

Proof.

dµt = dV (ξt, t) + L(ξt, t) = dt
(
∂t + Lξt

)
V (ξt, t) + [

√
A(ξt, t) · dwt] · ∂ξtV (ξt, t) (19)

The function V satisfies by hypothesis (8) hence

dµt = [
√
A(ξt, t) · dwt] · ∂ξtV (ξt, t) (20)

which shows that V is a local martingale. The integrability condition (17) then guarantees that the integral form of
(20) is a stochastic integral well-defined in square mean sense

µt −mo =

∫ t

to

[
√
A(ξt1 , t1) · dwt1 ] · ∂ξt1V (ξt1 , t1) (21)

for mo an integration constant. Hence in the same mean square sense the expected value of µt is conserved

Eµt = mo (22)

and similarly for any to ≤ t2 ≤ t

Eµt2 µt = µto +

∫ t2

to

[
√
A(ξt1 , t1) · dwt1 ] · ∂ξt1V (ξt1 , t1) = µt2 (23)

which is the defining property of a martingale.

The relation between martingales and stochastic integrals is discussed in details in sections 4.3 and 4.6 of [2]. In
appendix 3 we recall the definition and the martingale representation theorem.

2 Hamilton-Bellman-Jacobi equation: an heuristic derivation

Let us now consider a class of diffusion processes over the time horizon [to, tf ] taking values over a state space S and
with with generator of the form

Lx = b(x, t;u) · ∂x +
1

2
A(x, t;u) : ∂x ⊗ ∂x (24)

The notation implies that the drift and the diffusion fields depend upon a vector field u. We will refer to u in what
follows as the “stochastic control” of the problem. We set out to determine the functional dependence of u upon
S× [to, tf ] with respect to the control a functional of the process of the form

V (x, to; tf ) = min
u

Ex,to

{
U
(
ξtf
)

+

∫ tf

to

dtL (ξt, t;u)

}
(25)

To fix the terminology with will convene to call

• L the running cost function;

• U the terminal cost function;

• V the value function.
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Proceeding in an heuristic fashion, we observe that for any u for which there exists a (non-optimal) diffusion process
in the horizon [to, tf ] we can re-phrase (25) as

V (x, to; tf ) = min
u
J(x, to; tf ,u) (26a)

J(x, t; tf ,u) =

∫ tf

t
dt1

∫
S
ddx1L (x1, t1) p (x1, t1|x, t) +

∫
S
ddx1 U (x1) p (x1, tf |x, t) (26b)

Note that we suppose that U is independent of u. From the analysis of the previous section we expect that the function
J satisfies the backward Kolmogorov equation (omitting parametric dependencies)

(∂t + Lx)J(x, t) + L(x, t) = 0 (27a)

J(x, tf ) = U(x) (27b)

Suppose now that the set of admissible controls u is smoothly parametrized by a scalar quantity ε. If indeed (25)
admits a minimum, there must be a value ε? of ε,

u′
? :=

du

dε

∣∣∣∣
ε=ε?

(28)

such that

J ′
?(x, t) := (u′ · ∂uJ)(x, t)|ε=ε? = 0 ∀ (x, t) ∈ S× [to, tf ] (29)

independently of u′. In order to identify the critical point we can take the variation of (27) which yields

(∂t + Lx)J ′(x, t) + [b′(x, t) · ∂x + A′(x, t) : ∂x ⊗ ∂x]J(x, t) + L′(x, t) = 0 (30a)

J ′(x, tf) = 0 (30b)

As the equation for J ′ is linear, for arbitrary u we have

J ′(x, t) =

∫ tf

t
dt1

∫
S
ddx1

{
[b′(x, t) · ∂x + A′(x, t) : ∂x ⊗ ∂x]J(x, t) + L′(x, t)

}
p?(x1, t1|x, t) (31)

with p? the transition probability of the optimal process. If the drift and diffusion fields are sufficiently regular, the
system (30) admits an identically vanishing solution for a non-vanishing J? if the non-homogeneous term in (30a)
vanishes i.e. if

[(∂ub)(x, t) · ∂x + (∂uA)(x, t) : ∂x ⊗ ∂x]J(x, t) + ∂uL(x, t) = 0 (32)

The equation (32) specifies in general the critical values of u. In order to determine the minimizer, we should turn to
the study of the second variation of J . Around a critical point, the second variation must satisfy

(∂t + Lx)?J
′′
? (x, t) + [b′′?(x, t) · ∂x + A′′

?(x, t) : ∂x ⊗ ∂x]J(x, t) + L′′
?(x, t) = 0 (33a)

J ′′
? (x, tf) = 0 (33b)
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which we can re-write as

J ′′
? (x, t) =

∫ tf

t
dt1

∫
S
ddx1

{
[b′′?(x, t) · ∂x + A′′

?(x, t) : ∂x ⊗ ∂x]J(x, t) + L′′
?(x, t)

}
p?(x1, t1|x, t) (34)

The very interpretation of p? as transition probability imposes that this quantity must positive definite. It follows that
the second variation of J is positive definite for an arbitrary variation around the critical point if

v · {[(∂u ⊗ ∂ub)(x, t) · ∂x + (∂u ⊗ ∂uA)(x, t) : ∂x ⊗ ∂x]J(x, t) + (∂u ⊗ ∂uL)(x, t)} · v ≥ 0 (35)

for any v ∈ S. In particular, if drift and diffusion fields are linear in the stochastic control u the condition reduces to
the requirement that the running cost be a convex function of the control itself

v · (∂u ⊗ ∂u)L(x, t) · v ≥ 0 (36)

for any v ∈ S. The conclusion of this heuristic discussion is that the value function (25) must solve the Hamilton-
Bellman-Jacobi equation

∂tV (x, t) + min
u
{LxV (x, t) + L(x, t)} = 0 (37a)

V (x, tf) = U(x) (37b)

Two observations are in order.

• The key point of the above derivation is that we can determine the optimal control by minimizing locally at each
time step the running cost. The Hamilton-Bellman-Jacobi (37a) equation must therefore admit the interpretation
of being the backward Kolmogorov equation of the optimal process.

• The minimum condition in (37a) may admit more than one solution. In such a case, it is necessary to verify
a-posteriori which solution indeed corresponds to the optimum.

• In general, even after finding a unique solution of (37) it is still necessary to verify that the critical value of u
associated to it indeed corresponds to a well-defined diffusion process with generator

(Lx)? := b(x, t;u?) · ∂x +
1

2
A(x, t;u?) : ∂x ⊗ ∂x (38)

The conditions that the value function V must satisfy to pass such self-consistence check are specified by
verification theorems. We will later briefly expound the ideas behind these theorems.

The fact that optimal control of a Markov process stems from a set of local operation is encapsulated in Bellman’s
principle which we can state as the following proposition

Proposition 2.1. An optimal Markov control over an horizon [to, tf ] is specified by the requirement that the value
function be of stationary variation for any sub-interval [t, tf ] to ≤ t ≤ tf while holding fixed the state at time t.

The following calculation further evinces the self-consistence of the heuristic considerations brought forth to
substantiate Bellman principle . Namely, assuming a smooth dependence of the diffusion over u and using (27a) we
have

A′ (x, to; tf ) =

∫
S
ddxf U (xf ) p′ (xf , t|x, to)

+

∫ tf

to

dt

∫
S
ddxf

{
−[(∂t + Lxf

)J ] (xf , t) p′ (xf , t|x, to) + L′ (xf , t) p (xf , t|x, to)
}

(39)
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We can rewrite this equation as

A′ (x, to; tf ) =

∫
S
ddxf U (xf ) p′ (xf , tf |x, to)

−
{∫ tf

to

dt

∫
S
ddxf [(∂t + Lxf

)J ] (xf , t) p (xf , t|x, to)
}′

+

∫ tf

to

dt

∫
S
ddxf

{
[(∂t + Lxf

)J ]′ (xf , t) + L′ (xf , t)
}

p (xf , t|x, to) (40)

The argument of the third integral vanishes by (30a), whilst after an integration by parts in the second integral we
obtain

A′ (x, to; tf ) =

∫
S
ddxf [U (xf )− J (xf , tf)] p′ (xf , tf |x, to)

+J ′ (x, to)−
∫
S
ddxf J

′ (xf , tf) p (xf , tf |x, to)

−
{∫ tf

to

dt

∫
S
ddxf [(−∂t + L†

xf
)p] (xf , t|x, to) J (x, t)

}′
(41)

If L is the generator of a Markov process, the adjoint operation L† specifies the evolution of the probability density

(−∂t + L†
x)pξ] (xf , t|x, to) = 0 (42)

It is here worth emphasizing that whilst Ito lemma always implies that L is a differential operator L†, instead, is not
necessarily a differential operator (see e.g. [1] for classical examples). Taking into account the boundary conditions,
the variation finally reduces to

A′ (x, to; tf ) = J ′ (x, to) (43)

as claimed.

3 Verification theorems and Martingales

Let us consider again the optimization problem (25) and suppose that we know the value function up to a time t2 ≤ tf ,
then for any non-optimal choice of the control in the interval [t, t2) we have

V (ξt, t) ≤ J(x, t) := Ex,t

{∫ t2

t
dt1 L(ξt1 , t1;u) + V (ξt2 , t2)

}
(44)

This means that the process

µ̃t = V (ξt, t) +

∫ t

to

dt1 L(ξt1 , t1;u) (45)

specified by the sum of the V plus the time integral of the running cost evaluated over a non-optimal protocol defines
a sub-martingale. Namely direct differentiation yields

dµ̃t = dt
[
(∂t + L

[u?]
ξt

)V (ξt, t) + L(ξt, t;u)
]

+ [
√
A(ξt, t) · dwt] · ∂ξtV (ξt, t) (46)

Thus we see that the drift vanishes if we set the control u equal to its optimal value u?. In such a case, the sub-
martingale becomes a local martingale. We infer that the verification criterium for deciding that the solution V of the
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Hamilton Jacobi equation (37) specifies indeed the sought value function for the optimal control problem is that the
process

µt =

∫ t

to

[
√
A(ξt1 , t1) · dwt1 ] · ∂ξt1V (ξt1 , t1) (47)

is indeed a martingale, see [2] for further details.

Martingale definition

Definition .1. A stochastic process {ξt, t ∈ R+} is a martingale if for any t it is integrable,

E ‖ ξt ‖< ∞ (48)

and for any t1 > 0

E
{
ξt+t1 |F

(ξ)
t

}
≡ E

{
ξt+t1 |ξt

}
= ξt a.s. (49)

where F (ξ)
t is the natural filtration induced by ξt (i.e. the information about the process up to time t), and the equality

holds almost surely. It is a sub-martingale if under the same hypotheses

E
{
ξt+t1 |F

(ξ)
t

}
≡ E

{
ξt+t1 |ξt

}
≥ ξt a.s. (50)

and a super-martingale if

E
{
ξt+t1 |F

(ξ)
t

}
≡ E

{
ξt+t1 |ξt

}
≤ ξt a.s. (51)

Any stochastic differential equation without drift e.g.

dξt = A(ξt, t) · dwt (52)

is said to define a local martingale. It defines a martingale with respect to the filtration of the Wiener process in [0, t]
if

E

∫ t

0
dt1 v · (AA†)(ξt, t) · v < ∞ (53)

for any v ∈ Rd, (53) being the condition ensuring the existence of the stochastic integral in square mean sense. The
converse of this result is the martingale representation theorem

Theorem .1. Let ξt be a martingale with respect to the filtration Fw
T of the Wiener process such that

E ‖ ξt ‖2< ∞ ∀ t ≤ T (54)

Then there exists a unique Fw
T -adapted process At verifying (53) such that

ξt = ξo +

∫ t

0
At1 · dwt1 (55)

The uniqueness of At is required modulo a measure zero set in P×µ[0,t] where P is the measure over ξt and µ[0,t] the
Lebesgue measure over [0, t].
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