
One dimensional diffusions and boundary conditions

1 Tanaka’s formula: local time of the Wiener process

|wt| =
∫ t

0
dws sgnws + `

(0)
t;w (1.1a)

`
(0)
t;w =

∫ t

0
ds δ(ws) (1.1b)

Ito lemma

d|wt| = dwt ∂wt |wt|+
dt

2
∂2
wt |wt| = dwt sgnwt + dt δ(wt) (1.2)

Note that

sgnx = H(x)−H(−x) (1.3)

since

d

dx
H(x) = δ(x) (1.4)

we have

d

dx
sgnx = 2 δ(x) (1.5)

1.1 Conditional expectation of the local time

The expectation value of the local time spent at x by a Wiener process starting at the origin at time zero is

E0,0`
x
t;w =

∫ t

0
ds

∫
R
δ(y − x)

e−
y2

2 s

(2π s)1/2
=

∫ t

0
ds

e−
x2

2 s

(2π s)1/2
(1.6)

Let us observe that

E0,0`
λx
λ2 t;w =

∫ λ2t

0
ds

e−
λ2x2

2 s

(2π s)1/2
= λ

∫ t

0
ds

e−
x2

2 s

(2π s)1/2
= λE0,0`

x
t;w (1.7)

Let us choose now

λ =
1√
t

(1.8)
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we have then

t1/2 E0,0`
x√
t

1;w = E0,0`
x
t;w (1.9)

whence we see that if we take the limit of t tending to infinity for fixed x we obtain

E0,0`
x
t;w

t↑∞∼ t1/2 E0,0`
0
1;w (1.10)

The natural tool to study scaling behavior is the Mellin transform

˜(Ex`0t;w)(z) =

∫
R

dw

w

1

wz

∫ w t

0
ds

e−
x2

2 s

(2π s)1/2
=
tz

z

∫ ∞
0

ds
e−

x2

2 s

(2π s)1/2sz
(1.11)

It yields for <z > 1/2

˜(Ex`0t;w)(z) =
t1/2 Γ

(
z − 1

2

)
(2π)1/2 z

(
2 t

x2

)z− 1
2

(1.12)

We can extricate the asymptotic behavior for τ ↑ ∞ by using Cauchy theorem to shift the integration contour to the
left. We get into

Ex`
0
t;w ∼

(
2 t

π

)1/2

(1.13)

1.2 Interpretation

Let ξt be a differentiable trajectory and suppose

H = {t : ξt = x} (1.14)

is a countable set then ∫ t

0
ds δ(ξs − x) =

∑
ti∈H

∫ t

0
ds δ

(
dξs
ds

(s− ti)
)

=
∑
ti∈H

1∣∣∣dξsds (ti)
∣∣∣ (1.15)

Hence in order to count the number of times the process hits x we need to compute∫ t

0
ds

∣∣∣∣dξsds
∣∣∣∣ δ(ξt − x) =

∑
ti∈H

1 (1.16)

Thus we have

ν
(x)
t;ξ =

1

t

∫ t

0
ds

∣∣∣∣dξsds
∣∣∣∣ δ(ξt − x) (1.17)

is the fraction of the time horizon t spent by the process in x. Hence in order to generalize the concept of local time
to arbitrary diffusion we need to make sense of the Jacobian term in (1.17). Before turning to this task, let us also
observe that any time average

f̄t =
1

t

∫ t

0
ds f(ξs) (1.18)

can be re-written as

f̄t =

∫
R
dxµt;ξ(x) f(x) (1.19)

with

µt;ξ(x) =
1

t

∫ t

0
ds δ(ξs − x) (1.20)
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2 Time change and local time for local martingales

Let

a : R 7→ R+ (2.1)

strictly positive and satisfying the hypotheses of existence and uniqueness for stochastic differential equations. Con-
sider the local martingale

dξt = a(ξt) dwt (2.2a)

ξ0 = xo (2.2b)

Proposition 2.1. Let ζt the stochastic process solution of (2.2). Then

τ =

∫ t

0
dt1 a

2(ξt1) (2.3)

is a monotonically growing random process and we have

ξt = xo + w̃τ (2.4)

where w̃ is a Wiener process

Proof.
We wish to define a new time

τ = f(t, {ξt})

such that

w̃τ = ξt

defines a Wiener process. Since arbitrary increments must satisfy

E(w̃τ2 − w̃τ1)2 = E(τ2 − τ1)

then, for any realization of the process the identity

wτ(t+dt) − wτ(t) =

√
dτ

dt
dwt = dξt

must hold true. Thus, we obtain

dτ

dt
= a2(w̃τ ) > 0 (2.5)

We can, thus, define the local time for the process specified by (2.2) by time-re-parametrization. Namely we know
that (2.3) maps ξt into a Wiener process and by Tanaka’s formula we know the expression of the local time for such
Wiener process. By inverting the mapping we can identify the local time of ξt. Explicitly

`
(x)
τ ;w̃ :=

∫ τ

0
ds δ(ws − x) (2.6)
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if we set

wτ = ξt − xo (2.7)

we obtain

`
(x)
τ ;w̃ = `

(x)
t;ξ−xo =

∫ t

0
ds a2(ξs) δ(ξs − x− xo) (2.8)

which defines the local time for the process (2.2)

`
(x)
t,ξ =

∫ t

0
ds a2(ξs) δ(ξs − x) (2.9)

2.1 Relation to the quadratic variation of the local martingale

We observe that if ξt solves (2.2), the quadratic variation of the differential is

〈dξs, dξs〉 = a2(ξs) dt (2.10)

Proposition 2.2. For any integrable function f [7] the integral over the quadratic variation of a local martingale is∫ t

0
ds a2(ξs) f(ξs) =

∫ t

0
ds a2(ξs) f(ξs)

∫
A
dx δ(x− ξs) =

∫
A
dx f(x) `

(x)
t;ξ (2.11)

where

`
(x)
t;ξ =

∫ t

0
ds a2(ξs) δ(x− ξs) (2.12)

is the local time at x of the local martingale.

Note that

Exo`
(x)
t;ξ =

∫ t

0
ds a2(x) pξ(x, s|xo) (2.13)

so that

d

dt
Exo`

(x)
t;ξ = a2(x) pξ(x, t|xo) (2.14)

3 Scale function, speed measure and local time for semimartingales

Let us consider now the diffusion process

dζt = b(ζt) dt+ c(ζt) dwt (3.1)

We look for a change of variables

ξt = S(ζt) (3.2)

where

dξt = a(ξt) dwt (3.3)
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In such a case

a ◦ S(ζt) dwt =

[
dζt∂ζt +

1

2
c2(ζt)∂

2
ζt

]
S(ζt) (3.4)

yields [
b(z) ∂z +

1

2
c2(z) ∂2

z

]
S(z) = 0 (3.5a)

a ◦ S(z) = c(z)∂zS(z) (3.5b)

Hence if S is monotonic we have

a(x) = (c S′) ◦ S−1(x) (3.6)

with S(x) is the scale measure of the process

S(x) =

∫ x

x1

dy1 exp{−
∫ y1

xo

dy2 2 (c−2 b)(y2)} (3.7)

Three observations are in order

• (3.7) is the solution of a second order differential equation: the arbitrariness of the boundary of integration
xo, x1 stems from the number of boundary conditions that the solution can satisfy.

• A second order differential equation admits two linearly independent solutions: in particular, (3.5a) admits also
any constant for solution.

• S(x) is monotonically increasing

S′(x) = e−
∫ x
xo
dy 2 b

c2 ≥ 0 (3.8)

We can construct the local time of the semi-martingale specified by (3.1) following the same steps as in the case of a
local martingale in section 2. By (2.9) we have

`
(x)
t,ξ = `

(x)
t,S(ζ) =

∫ t

0
ds (c S′)2(ξs)δ(S(ξs)− x) (3.9)

Thus if we redefine x 7→ S(x) we obtain

`
(x)
τ ;ζ =

∫ t

0
ds c2(ξs)S

′(ξs) δ(ξs − x) (3.10)

since

δ(S(y)− S(x)) =
δ(y − x)

S′(x)
(3.11)

as S′ is positive definite.

Definition 3.1. We define the speed measure as

Vξ(x) =
1

c2(x)S′(x)
(3.12)
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The speed measure enjoys the following properties.

• The average of the local time over the speed measure equals the time elapsed since the time when the initial
condition was assigned ∫

R
dy `(x)

τ ;y Vξ(y) =

∫
R
dy

∫ t

0
ds δ(y − S−1(x)) = t (3.13)

• The speed measure coincides with the stationary measure if this latter exists. Namely(
∂xb−

1

2
∂xc

2

)
p? = 0 (3.14)

admits the solution

p?(x) =
e
∫ x
x̄ dx1

2 b(x1)

c2(x1)

c2(x)
≡ 1

c2(x)S′(x)
= Vξ(x) (3.15)

which is an admissible stationary solution if ∫
S
dx p?(x) = 1 (3.16)

for a suitable choice of x̄.

3.1 Examples of scale and speed measure

• Brownian motion with drift:

ξt = b t+ awt (3.17)

The scale and speed measure are respectively

S′(x) = e−
2 b x
σ2 & V (x) =

e
2 b x
a2

a2
(3.18)

• Bessel process

dξt =
d− 1

2 ξt
dt+ dwt (3.19)

The scale and speed measure are respectively for d > 1

S′(x) = x1−d & V (x) = xd−1 (3.20)

3.2 Summary

The local time of a semi-martingale is defined as

`
(x)
t;ξ =

∫ t

0
ds
δ(ξs − x)

Vξ(ξs)
(3.21)

The speed measure is the analogous of the inverse flow velocity in the deterministic case. It weights more the points
where the process slows down and therefore spends more time. If the process admits a steady state the speed measure
coincides with it.
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4 Exit time statistics and Feller’s classification of boundaries

We restrict the attention to the autonomous case

Lx = b(x)∂x +
1

2
a2(x)∂2

x (4.1)

Let I = (xm, xM ) an open interval. We define the first hitting time of xm as

τx|xm = inf
t∈R+

{t : ξt = xm & ξ0 = x} (4.2)

and of xM

τx|xM = inf
t∈R+

{t : ξt = xM & ξ0 = x} (4.3)

The exit time from the interval is then

τx = τx|xm ∧ τx|xM (4.4)

4.1 Scale measure and hitting probability

The probability of exiting I from xm admits an explicit expression in terms of the scale measure

P(ξτx = xm) = P(τx|xm < τx|xM ) =
S(xM )− S(x)

S(xM )− S(xm)
(4.5)

provided the scale measure satisfies −∞ < S(xm) ≤ S(xM ) < ∞. From (4.5) we can draw the following
conclusions.

• If the scale measure blows up at xm then the diffusion hits first xM with probability one.{
limx↘xm S(x) = −∞

S(xM ) < ∞
⇒ P(ξτx = xm) = P(τx|xm < τx|xM ) = 0 (4.6)

• If the scale measure is finite at xm and diverges at xM the diffusion hits first the lower boundary with probability
one {

S(xm) > −∞

limx↗∞ S(x) = +∞
⇒ P(ξτx = xm) = P(τx|xm < τx|xM ) = 1 (4.7)

In order to understand these results we observe that by its very definition (3.2) the scale measure maps a semi-
martingale into a Wiener process parametrized by a random clock. Thus the divergence of the scale measure corre-
sponds to the Wiener process diffusing to plus or minus infinity. The probability of such events is infinitesimal since
it is specified by the tails of a Gaussian distribution. Hence the results above must follow.

4.2 Expected exit time

Over an infinite time horizon the expected value of the exit time from I satisfies

Lx Eτx = −1 (4.8a)
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E τxm = E τxM = 0 (4.8b)

We can couch the solution into the form

E τx = P(ξτ = xm) E τx|xm + P(ξτ = xM ) E τx|xM (4.9)

with

Eτx|xm ≡ E {τx|ξτ} = 2

∫ x

xm

dy V (y) [S(y)− S(xm)] (4.10a)

Eτx|xm ≡ E {τx|ξτ = xM} = 2

∫ xM

x
dy V (y) [S(xM )− S(y)] (4.10b)

Note that whenever they are finite over [xm, xM ] the functions Eτx|xm , Eτx|xM enjoy the following properties.

• They are positive definite

Eτx|xm ,Eτx|xM ≥ 0 (4.11)

• They vanish on the conditioning boundaries

E τxm|xm = E τxM |xM = 0 (4.12)

• They admit the re-writing

Eτx|xm = 2

∫ x

xm

dy V (y)

∫ y

xm

dy1 S
′(y1) = 2

∫ x

xm

dy S′(y)

∫ x

y
dy1 V (y1) (4.13a)

Eτx|xM = 2

∫ xM

x
dy V (y)

∫ xM

y
dy1 S

′(y1) = 2

∫ xM

x
dy S′(y)

∫ y

x
dy1 V (y1) (4.13b)

The expressions to the right are natural to resort to in order to study the boundary behavior as a limit:

lim
ε↘0

Eτx|xm+ε = 2

∫ x

xm+ε
dy S′(y)

∫ x

y
dy1 V (y1) (4.14a)

lim
ε↘0

Eτx|xM−ε = 2

∫ xM−ε

x
dy S′(y)

∫ y

x
dy1 V (y1) (4.14b)

4.3 Interpretation of the exit time integrand

The stationary state equation

(−∂xb+
1

2
∂2
xa

2)p = 0 (4.15)

equation admits beside the aforementioned solution p1(x) = V (x) the solution

p2(x) = c V (x)

∫ x

xo

dy S′(y) ≡ c V (x)

∫ x

xo

dy
1

V (y) a2(y)
(4.16)

corresponding to the constant flux condition (
−b+

1

2
∂xa

2

)
p = c (4.17)

with c and xo two constants to be fixed by imposing the boundary conditions.
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5 Feller classification of boundaries

Let us fix the attention on xm. A nice presentation of Feller’s classification can be found in [3] pag. 293 ( or [2] pag
231). It is convenient to define

b(x) = − a2(x) (∂xU)(x) (5.1)

This means that if g specifies the inverse of a metric then b is the gradient vector field (push-forward) of the potential
U . The definition (5.1) yields for the scale function

S(x;xo, x1) =

∫ x

x1

dy e2 [U(y)−U(xo)] (5.2)

and

V (x;xo) =
e−2 [U(x)−U(xo)]

a2(x)
(5.3)

5.1 Diffusion coefficient degenerate at one boundary

Suppose that diffusion coefficient vanishes at xm while satisfying there the Lipschitz condition required by the xis-
tence and uniqueness theorem

a(xm) = 0 & (∂xa
2)(xm) = 0

• Exit boundary:

b(xm) < 0 (5.4)

if the diffusion reaches xm it will leave I with unit probability.

• Entrance boundary:

b(xm) > 0 (5.5)

if the diffusion reaches xm the drift will steer it back into I .

• Natural boundary:

b(xm) = 0 (5.6)

xm is a fixed point for the diffusion process.

For example let us consider

dξt = (µ− σ2 ξt) dt+ σ ξt(1− ξt) dwt (5.7)

for ξt ∈ (0, 1).

• the diffusion coefficient vanishes for

ξt = 0 & ξt = 1 (5.8)

• The drift is positive in zero if µ > 0
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• The drift is negative in one if µ < σ2

The stationary distribution is

pξ(x) =
C

x4− 4µ

σ2 (1− x)
4µ

σ2

exp

{
−2

µ+ x (σ2 − 2µ)

σ2 x (1− x)

}
(5.9)

and is always normalisable for

0 < µ < σ2 (5.10)

as the argument of the exponential is negative definite.

5.2 General Feller classification

In general, the boundary xm may be of four different types. To classify them let us fix an arbitrary x̄ such that
xm < x̄ < xM .

5.2.1 Regular boundary

∫ x̄

xm

dy V (y) < ∞ & S(xm) > −∞ (5.11)

There is a finite probability to hit xm in finite time and the speed measure is integrable. Note that the conditions above
also imply (the scale measure grows monotonically)

E τx|xm < ∞ (5.12)

It is possible to impose reflecting boundary conditions at the boundary.

5.2.2 Exit (or capturing boundary) boundary

∫ x̄

xm

dy V (y) = ∞ & E τx|xm < ∞ (5.13)

the boundary can be reached, on average, in a finite time. The speed measure is not integrable entailing that the
process does not admit a normalizable steady state because the diffusion accumulates at xm (i.e. it “exits” the open
domain (xm, xM )). For example, Let us suppose

xm = 0 (5.14)

and {
b(x) = bo < 0

a2(x) = a2
o x

2
⇒ U(x) =

bo
a2
o x

We have then

S′(x) ∝ e−
2 |bo|
a2
o x & V (x) ∝ e

2 |bo|
a2
o x

a2
o x

2
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Hence the speed measure is not integrable at the origin for any bo ≤ 0. In order to estimate the conditional expectation
of the exit time we recall the first mean value theorem for definite integrals∫ b

a
f(x) dx = f(c)(b− a)

This means that there exists some ȳ(y) ∈ [0, y] such that

Eτx|0 =

∫ x

0
dy

y S′(ȳ)

a2(y)S′(y)
=

∫ x

0
dy

e
2 |bo| (ȳ−y)

a2
o y ȳ

a2
o y

< ∞

In this case one can impose absorbing or constant flux boundary conditions (i.e. re-inject from the other boundary the
probability loss).

5.2.3 Entrance boundary

∫ x̄

xm

dy V (y) < ∞ & E τx|xm = ∞ (5.15)

Contrasting this condition with (4.10a) we infer that

lim
x↓xm

S(x) = −∞ ⇒ E τx|xm = ∞ (5.16)

For example let at xm = 0 the drift and diffusion satisfy{
b(x) = bo > 0

a2(x) = a2
o x

2
⇒ U(x) =

bo
a2
o x

It follows that

S′(x) ∝ e
2 bo
a2
o x & V (x) ∝ e

− 2 bo
a2
o x

a2
o x

2

Hence the speed measure is integrable at the origin but

Eτx|0 =

∫ x

0
dy

y S′(ȳ)

a2(y)S′(y)
=

∫ x

0
dy

e
−2 bo (ȳ−y)

a2
o y ȳ

a2
o y

=∞

5.2.4 Natural boundary

We have ∫ x̄

xm

dy V (y) = ∞ & E τx|xm = ∞ (5.17)

For example, for xm = 0 
b(x) = bo x

2

a2(x) = a2
o x

2

bo > 0

⇒ U(x) = −box
a2
o

(5.18)
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In such a case, we have

S′(x) ∝ e−
2 bo x

a2
o & V (x) ∝ e

2 bo x

a2
o

a2
o x

2
(5.19)

whence

E τx|ε ∼
∫ x̄

ε
dy

e
2 bo x

a2
o − 1

a2
o x

2

ε↓0→ ∞ (5.20)

5.3 Behavior at a reachable boundary

We follow here the terminology of [5] pag. 167

• Absorbing boundary:

ξt = ri ∀ t > τx (5.21)

• Instantaneous reflection: for ε arbitrarily small

ξτx+ε ∈ (xm, xM ) (5.22)

Furthermore the event

A = {t : ξt = xm} ∪ {t : ξt = xM} (5.23)

has zero Lebesgue measure.

• Slow reflection (sticky boundary): for ε arbitrarily small

ξτx+ε ∈ (xm, xM ) (5.24)

Furthermore the event (5.23) has finite Lebesgue measure.

• Jumps at the boundary: re-injection with some probability once the boundary is reached.

In the ensuing section we will give some quantitative criteria to discriminate between the different boundary
behaviors.

6 Example: Cox–Ingersoll–Ross process

Feller introduced the process which is now know as CIR (Cox–Ingersoll-Ross process) in [4] as a model problem
for the study of boundary behavior of stochastic differential equations. The process was afterwards re-derived in [1]
where it came about as a model of interest rates dynamics.

The process is described by the Ito stochastic differential equation

dξt = (c+ b ξt) dt+
√

2 a ξt dwt (6.1)

The equivalent Stratonovich stochastic differential equation is

dξt = (c− a+ b ξt) dt+
√

2 a ξt dwt (6.2)
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6.1 Elementary considerations

• First moment:

Eξt = eb tEξ0 +
c

b

(
eb t − 1

)
(6.3)

Thus for ξ0 close to the origin and b t� 1 we have

Eξt ∼ Eξ0 + c t (6.4)

which hints that the origin is attractive for c < 0. Stratonovich representation states instead that path close to
differentiable ones behave as

Eξt ∼ Eξ0 + (c− a) t (6.5)

provided

b t � 1 &
√

2 a b t � 1 (6.6)

• Second moment:

dEξ2
t = 2 [(c+ a) Eξt + bEξ2

t ] dt (6.7)

whence

Vξt = Eξ2
t − (Eξt)

2 (6.8)

satisfies

dVξt = 2 (aEξt + bVξt) dt (6.9)

We obtain

Vξt = Vξo e
2 b t +

2 aEξo
b

(eb t − 1) eb t +
2 a c

b2
(eb t − 1)2 (6.10)

For small values of t

Vξt = Vξo + 2 (aEξo + bVξo) t+O(t2) (6.11)

6.2 Boundary behavior

We have bay definition a > 0

U(x) = −
∫ x

dy
c+ b y

2 a y
=

c

2 a
ln

1

x
− b x

2 a
(6.12)

whence

S′(x) =

(
1

x

) c
a

e−
b x
a & V (x) ∝ x

c
a−1e

b x
a (6.13)

and

Eτx|ε ∼
∫ x̄

ε

dy

y

e−
by
a

y
c
a
−1

∫ x̄

y
dy1 y

c
a−1
1 e

b y1
a (6.14)

13



• c ≤ 0: Feller proved that the initial condition fully specify a solution of the Fokker-Planck equation without
the need of a boundary condition at x = 0. Such solution is positivity but not norm preserving. By (6.13) we
see that the speed measure is not integrable at the origin. The conditional expected exit time is, however finite.
The origin is a capturing boundary.

• 0 < c ≤ a: the origin is a regular boundary.

– it is possible to impose a reflecting boundary condition at the origin. The solution of the Fokker-Planck
equation is in such a case positivity and norm preserving.

– there exist “generalised” absorbing boundary conditions. Such solutions are positivity but not norm pre-
serving.

• c > a: the speed measure is integrable at the origin but the speed measure thereby diverges. The origin is
not reachable. Hence there exists a norm and positivity preserving solution for which both flux and probability
density vanish at the origin.

Feller shows that reflecting boundary at zero for 0 < c ≤ a yield

lim
x↘0

p(x, t) =


∞ 0 < c < a

finite positive c = a

0 c > a

& j(0, t) = 0 (6.15)

This means that for c > a an outward flux condition in the origin would give rise to a non-positive definite solution
of the Fokker-Planck equation.

7 Foguel alternative and ergodic results

Suppose that the solution of the D valued Itô time-autonomous stochastic differential equation

dξt = b(ξt)dt+ A(ξt) · dwt (7.1)

is sufficiently regular to admit a unique stationary measure ρ? over D. Foguel alternative is a general result about the
time-asymtpotic properties of solutions of the time-autonomous backward Kolmogorov equation. It states that

Proposition 7.1. For any integrable test function with respect to the measure specified by (7.1), either of the two
statements below holds (see § 3.2.4 of [6] for details):

1. the time average of the expectation value vanishes

lim
T↑∞

1

T
Ex,0

∫ T

0
dt f(ξt) = 0

2. the time average of the expectation value tends to the average with respect to the stationary measure ρ?

lim
T↑∞

1

T
Ex,0

∫ T

0
dt f(ξt) =

∫
D

dy ρ?(y) f(y)
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We avail us of Foguel alternative to relate the time-asymtpotic properties of solutions of the time-autonomous
backward Kolmogorov equation to ergodic theory. Namely we may construct a function φ such that

Lx φ = f (7.2a)

φ|x∈∂D = b.c. depending upon the stochastic process (7.2b)

then by Dynkin formula∫ T

0
dt f(ξt) =

∫ T

0
dt (∂t + Lξt)φ(ξt, t) = φ(ξT , T )− φ(ξ0, 0)−

∫ T

0
[A(ξt) · dwt] · ∂ξtφ(ξt) (7.3)

we have the general relation ∫ T

0
dtExf(ξt) = Exφ(ξT , T ;T )− φ(x, 0;T ) (7.4)

and consequently

lim
T↗∞

Exφ(ξT , T ;T )− φ(x, 0;T )

T
= lim

T↗∞

1

T

∫ T

0
dtEf(ξt) (7.5)

where the average is with respect to the invariant measure of ξt. This means that the average evolves as

(∂t + Lx)φ = f (7.6a)

φ(x, T ) = φo(x) (7.6b)

If φo is bounded we obtain

lim
T↗∞

φ(x, 0;T )

T
= − lim

T↗∞

1

T

∫ T

0
dtExf(ξt) (7.7)

7.1 Slow reflection in 1d: diffusion coefficient vanishing at one boundary

Suppose first

a(0) = 0 (7.8)

and consider a diffusion in an interval I ⊆ R+ with left boundary in the origin. We also suppose that the speed
measure is integrable.

• Exit boundary:

b(0) < 0 (7.9)

• Entrance boundary:

b(0) > 0 (7.10)

• Natural boundary:

b(0) = 0 (7.11)
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We have the boundary condition

lim
x↘0

[(∂t + b ∂x)φ](x, t) = f(0) (7.12)

By definition the speed measure satisfies

L†xV = 0 (7.13)

we have ∫
R+

dxV (x) [(∂t + Lx)φ](x, t) =

∫
R+

dx (V f)(x) (7.14)

Integrating by parts we get into

−[V (b + a∂x)φ](0) + [(φ∂x)a V ](0) +

∫
R+

dx (V ∂tφ)(x, t) =

∫
R+

dx (V f)(x) (7.15)

Let us suppose

λ := − lim
T↗+∞

∂tφ(x, t;T ) = lim
T↗+∞

φ(x, t;T )

T
≡ − lim

T↗∞

1

T

∫ T

0
dtExf(ξt) (7.16a)

∫
R+

V (x) = K < ∞ (7.16b)

with λ,K constants. The probability flux at zero is then

−[φ (b− ∂x)a V ](0) := Φ (7.17)

The equation satisfied by λ is

Φ−
[(

V a

b

)
(0) +K

]
λ−

(
V a f

b

)
(0) =

∫
R+

dx (V f)(x) (7.18)

which yields

λ = −
f(0) + b(0)

[∫
R+
dx (V f)(x)− Φ

]
1 + b(0)

∫
R+
dxV (x)

(7.19)

and therefore

lim
T↗∞

1

T

∫ T

0
dtExf(ξt) =

f(0) + b(0)
[∫

R+
dx (V f)(x)− Φ

]
1 + b(0)

∫
R+
dxV (x)

(7.20)
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