
1 Introduction

These notes follow chapter 6 of [1].

2 Stopping time

Definition 2.1 (Stopping time). A random variable

τ : Ω→ [0 ,∞]

is called a stopping time with respect to a filtration of σ-algebras {Ft | t ≥ 0} provided

{τ ≤ t} ∈ Ft for all t ≥ 0

In other words, the set of all ω ∈ Ω τ (ω) ≤ t is Ft-measurable. The stopping time τ is allowed to take on the
value +∞, and also that any constant τ = to is a stopping time. Furthermore it enjoys the following properties

Proposition 2.1 (Properties of a stopping time). Let τ1 and τ2 stopping times with respect to {Ft | t ≥ 0}. Then

i {τ < t} ∈ Ft and {τ = t} ∈ Ft for all t ≥ 0

ii τ1 ∧ τ2 and τ1 ∨ τ2 are stopping times

Proof. We set

{τ < t} =

∞⋃
k=1

{
τ ≤ t− 1

k

}
i.e. {τ < t} occurs if there exists a k ≥ 1 such that the event {τ ≤ t− 1/k} occurs. But

{τ ≤ t− 1/k} ∈ Ft− 1
k
⊆ Ft

Similarly

{τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t} ∈ Ft

and

{τ1 ∨ τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft

The following theorem evinces the relevance of stopping times for the study of stochastic differential equations

Theorem 2.1. Let ξt solution of the stochastic differential equation

dξt = b (ξt, t) dt+ A(ξt, t) · dwt

ξto = xo

satisfying the hypotheses of the theorem of existence and uniqueness. Let also A be a non-empty open or closed subset
of Rd. Then

τ := inf {t | ξt ∈ A}

is a stopping time with the convention τ =∞ if ξt ∈/ A for all t.
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Proof. Let t ≥ 0 we need to show that {τ ≤ t} ∈ Ft. To that goal we introduce the sequence {ti}∞i=1 dense on R+

and consider separately the cases when A is close and open.

• A is open. The event that there exists a ti less than t such that ξti belongs to A reads

{τ ≤ t} =
⋃
ti≤ t

{
ξti ∈ A

}
A

xo

and is therefore the union of events belonging to Ft, thus proving the claim.

• A is closed. Let

d (x,A) := distance (x,A)

and define the open sets

An =

{
x | d(x ,A) <

1

n

}
The event

{τ ≤ t} =
∞⋂
k=1

⋃
ti≤t

{
ξti ∈ An

}
also belongs to Ft as the

{
ξti ∈ An

}
’s do.

Remark 2.1. The random variable

τ̃ = sup {t | ξt ∈ A}

is not in general a stopping time as in general it is not Ft measurable but may depend on the history of ξ for times
later than t.

3 Applications of the stopping time

Let φt be the fundamental solution of the stochastic differential equation

dξt = b (ξt , t) dt+ A (ξt , t) · dwt (3.1)

which we assume to globally satisfy the hypotheses of the theorem existence and uniqueness of solutions. In other
words for any initial data (xo , to) we have that

ξt = φt (xo , to) (3.2)

for t ≥ to solves (3.1). To (3.1) also we associate the generator

Lx := b (x, t) · ∂x +
1

2
G (x, t) : ∂x ⊗ ∂x (3.3)

with

G = AA† (3.4)
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3.1 Exit time form a domain

Let A a smooth bounded open subset of Rd. The stopping time

τx,t = inf
t1

{
t ≤ t1 ≤ T |φt1 (x , t) ∈ ∂A

}
(3.5)

specifies the time when the diffusion process starting from x ∈ A at time t exists for the first time the domain A
during a time horizon [t, T ).

Proposition 3.1. Under the above hypotheses, for any x ∈ A we have

E (τx,t ∧ T − t) = f (x, t) (3.6)

for

(∂t + Lx)f (x, t) = −1 (3.7a)

f (x, ·) |x∈A = 0 (3.7b)

f (·, T ) = 0 (3.7c)

More generally for we have

E (τx,t ∧ T − t)n = gn (x, t) (3.8)

for g0(x, t) = 1

(∂t + Lx) gn (x, t) = −n gn−1 (x, t) (3.9a)

gn (x, ·) |x∈A = 0 (3.9b)

gn (·, T ) |x∈A = 0 (3.9c)

Proof. By Dynkin’s formula we have for any sufficiently regular f

f
(
φτx,t∧T , τx,t ∧ T

)
= f (x, t) +∫ τx,t∧T

t
ds (∂s + Lφs

)f (φs, s) +

∫ τx,t∧T

t
[A (φs, s) · dws] · ∂φs f (φs, s)

If furthermore f satisfies (3.7) then

τx,t ∧ T − t = f (x, t) +

∫ τx,t∧T

t
[A (φs, s) · dws] · ∂φs f (φs, s)

Taking averages proves (3.6). In general, using (3.15b), (3.15c) in Dynkin’s formula for t1 ≥ t yields

gn
(
φt1 , t1

)
= −

∫ τx,t∧T

t1

ds (∂s + Lφs
) gn (φs, s)−

∫ τx,t∧T

t1

[A (φs, s) · dws] · ∂φs gn (φs, s)
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If we furthermore impose (3.15a) we get into

gn (x, t) = −n
∫ τx,t∧T

t
ds

∫ τx,t∧T

s
ds1(∂s1 + Lφs1

)gn−1
(
φs1 , s1

)
−n

∫ τx,t∧T

t
ds

∫ τx

s
[A
(
φs1 , s1

)
· dws1 ] · ∂φs1gn−1

(
φs1 , s1

)
−
∫ τx,t∧T

t
[A (φs, s) · dws] · ∂φsgn−1 (φs, s) (3.10)

Iterating n-times gives

gn (x, t) = Γ(n+ 1)

∫ τx,t∧T

t
ds0

n−2∏
k=0

∫ τx,t∧T

sk

dsk+1

∫ τx,t∧T

sn−1

dsl

−
n∑
l=1

Γ(n+ 1)

Γ(n− l + 1)

∫ τx,t∧T

t
ds0

l−2∏
k=0

∫ τx,t∧T

sk

dsk+1

∫ τx,t∧T

sl−1

[A
(
φsl , sl

)
· dws] · ∂φsl gn−1

(
φsl , sl

)
−
∫ τx,t∧T

t
[A (φs, s) · dws] · ∂φsgn−1 (φs, s) (3.11)

Taking the average finally yields

gn(x, t) = Γ(n+ 1)E

∫ τx,t∧T

t
ds0

n−2∏
k=0

∫ τx,t∧T

sk

dsk+1

∫ τx,t∧T

sn−1

dsl = E(τx,t ∧ T − t)n

whence the claim.

Some observations are in order.

• The boundary conditions associated to (3.15) admit a direct interpretation.

– (3.15b) states that if the process starts from the boundary the time it takes to reach them is (tautologically)
zero.

– (3.15c) states that if the process starts at time t = T then the random variable

τx,T ∧ T − T = 0 (3.12)

by construction.

• If the drift and diffusion vector fields are time-independent, time translation invariance is broken only by the
final condition. Hence we must have (3.15)

E(τx,t ∧ T − t)n = gn(x, t;T ) = gn(x, 0;T − t) (3.13)

• For an infinite time horizon

lim
T↑∞

(τx,t ∧ T − t) = τ̄x (3.14)

Namely by (3.13) the solution of (3.15) must converge to a time independent one solving on its turn the problem

[
b(x) · ∂x +

1

2
G(x) : ∂x ⊗ ∂x

]
gn (x) = −n gn−1 (x) (3.15a)
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gn (x, ·) |x∈A = 0 (3.15b)

g0 (x, t) = 1 (3.15c)

It is possible to recover the above results starting from the forward Kolmogorov (Fokker-Planck) equation. Consider
for any xo ∈ A the problem with absorbing boundary conditions

∂tp+ ∂x · ( b p) =
1

2
∂x ⊗ ∂x : (Gp) (3.16a)

p|x∈∂A = 0 (3.16b)

lim
t↓to

p = δ(d)(x− xo) (3.16c)

The interpretation of absorbing boundary conditions is of removing from the transition probability all those trajectories
that for times s ∈ [to, t] reached the boundary. Therefore

P (τxo,to ≥ t) =

∫
A
ddx p

ξ
(x, t |xo, to)

whence we infer

pτxo,to (t) = −∂t
∫
A
ddx p

ξ
(x, t |xo, to)

It follows immediately that

E(τxo,to ∧ T − to)n =

∫ T

to

dt (t− to)n pτxo,to (t) + (T − t)n
∫ ∞
T

dt pτxo,to (t)

whence it is straightforward to recover the equation for the moments of the stopping time. Namely if we differentiate
with respect to to

∂toE(τxo,to ∧ T − to)n = −n
∫ T

to

dt (t− to)n−1 pτxo,to (t)

−n (T − t)n−1
∫ ∞
T

dt pτxo,to (t) + LxoE(τxo,to ∧ T − to)n (3.17)

Inspection of the result allows us to recognize that

∂togn(xo, to) = −n gn−1(xo, to)− Lxogn(xo, to) (3.18)

which is the result we set out to obtain.

3.2 Hitting one part of a boundary first

Suppose now that the boundary ∂A of a A a smooth, bounded, and open subset of Rd can be decomposed as

∂A = B1 + B2 B1B2
xo
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with Bi i = 1, 2 smooth. To any xo ∈ A we can associate the stopping time

τBi|x,t = inf
t1

{
t ≤ t1 ≤ T |φt1 (x, t) ∈ Bi

}
i = 1, 2 (3.19)

through the mapping defined by the fundamental solution of (3.1).

Proposition 3.2. The probability that φt1(x, t1) hits first B1 is specified by the solution of

(∂t + Lx)u (x, t) = 0 (3.20a)

u (x, ·) |x∈B1 = 1 & u (x, ·) |x∈B2 = 0 (3.20b)

u (x, T ) |x∈B1 =

{
1 ∀x ∈ B1

0 ∀x ∈ A ∪ B2

(3.20c)

Proof. By Dynkin’s formula we have

u
(
φt1 (x, t) , t1

)
= u (x, t) +

∫ t1

t
ds (∂s + Lφs

)u (φs, s) +

∫ t

0
[A (φs, s) · dws] · ∂φisu (φs, s)

Upon setting t1 = τB1|x,t and requiring u(x, t) to satisfy (3.20), the average of the Dynkin’s formula above yields

P
(
τB1|x,t ≤ T ∧ τB2|x,t

)
= u (x, t)

Again the boundary conditions admit a direct interpretation

• (3.20b) means that if the process starts for t < T from B1 or B2 the event is certain.

• (3.20c) means that if the process starts for t = T the event is also certain because B1 can be reached for times
less than T only if the diffusion starts from B1.

4 Recurrence of the Wiener process

Let wt a d-dimensional Wiener motion

ξt =
∣∣∣∣w2

t

∣∣∣∣
then

dξt = d dt+ 2
√
ξt
wt · dwt

||wt||

The stochastic process

ηt =

∫ t

0

ws · dws

||ws||

enjoys the following properties
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• Vanishing first moment

E ηt = 0

• Correlation function coinciding with that of the Wiener process

E ηt2ηt1 =

∫ t2∧t1

0
dt
wt ·wt

‖ wt ‖2
= t2 ∧ t1

• Gaussian statistics: suppose t1 ≤ t2 ≤ · · · ≤ t2n

E
2n∏
i=1

wti · dwti

‖ wti ‖
= E

2n−2∏
i=1

wti · dwti

‖ wti ‖
δ(t2n − t2n−1)dt2n = · · · =

n∏
i=1

δ(t2 i − t2 i−1)dt2 i (4.1)

On the other hand

E

2n+1∏
i=1

wti · dwti

‖ wti ‖
= 0 (4.2)

• Independent increments

ηt+to − ηto =

∫ t+to

to

ws · dws

||ws||

Hence ηt is statistically equivalent to a Wiener process:

dξt = d dt+ 2
√
ξtdwt

We can ask whether the Wiener process leaves a ball of radius R around the origin before hitting the origin itself. To
answer such question we need to solve for some 0 < ε < 1

0 = d ∂xu+ 2x∂2xu (4.3a)

u (ε) = 0 & u (R) = 1 (4.3b)

A straightforward calculation yields

u(x) = P
(
τε|x ≤ τR|x

)
=


R1− d

2 − x1−
d
2

R1− d
2 − ε1−

d
2

d 6= 2

lnR− lnx

lnR− ln ε
d = 2

We observe

lim
ε↓0

P
(
τε|x ≤ τR|x

)
=

 1−
( x
R

)1/2
d = 1

0 d ≥ 2

In two dimensions, nevertheless

lim
R↑∞

P
(
τε|x ≤ τR|x

)
= 1

meaning that the process is recurrent in the sense that if G is any open set

P (||wt||2 ∈ G) = 1
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