1 Introduction

These notes follow chapter 6 of [1].

2 Stopping time
Definition 2.1 (Stopping time). A random variable
7:Q — [0, 0]
is called a stopping time with respect to a filtration of o-algebras {Fy |t > 0} provided
{r <t} e R forall t> 0

In other words, the set of all w € Q 7 (w) < ¢ is F;-measurable. The stopping time 7 is allowed to take on the
value 400, and also that any constant 7 = %, is a stopping time. Furthermore it enjoys the following properties

Proposition 2.1 (Properties of a stopping time). Let T and 1o stopping times with respect to {F; |t > 0}. Then
i{r <t}eFrand{r =t} € Fiforallt > 0
ii 71 \Toand TV To are stopping times
Proof. We set
> 1
<t)= <t—-
r<o=Ufr=t-1}
k=1
i.e. {7 < t} occurs if there exists a k& > 1 such that the event {7 <t — 1/k} occurs. But

{Tgt—l/k} c ft— Q.Ft

1
k
Similarly

{Tl/\TQS t}:{Tl < t}U{TQS t}e]-"t
and

{nvn<ti={n<tin{n<tlecF
O

The following theorem evinces the relevance of stopping times for the study of stochastic differential equations

Theorem 2.1. Let &, solution of the stochastic differential equation

dg; = b (&, 1) dt + A&, 1) - dw,

51,0 = Lo

satisfying the hypotheses of the theorem of existence and uniqueness. Let also A be a non-empty open or closed subset
of R%. Then

T:=1inf{t|& € A}

is a stopping time with the convention T = oo if §, ¢ A for all t.



Proof. Lett > 0 we need to show that {7 < ¢} € F;. To that goal we introduce the sequence {t;};-, dense on R
and consider separately the cases when A is close and open.

e A is open. The event that there exists a ¢; less than ¢ such that £, belongs to A reads

{r<ty= {& < 4} . 1?‘*@&

t;<t g\
I, ) ™

and is therefore the union of events belonging to J;, thus proving the claim.
e Aisclosed. Let
d(x,A) := distance (x, A)
and define the open sets

A, = {a:|d(a:,A) < 1}

n

The event
{r<ty= U {& € An}
k=1¢;<t

also belongs to F; as the {&, € A, }’s do.

Remark 2.1. The random variable
T=sup{t|& € A}

is not in general a stopping time as in general it is not J; measurable but may depend on the history of £ for times
later than ¢.

3 Applications of the stopping time

Let ¢, be the fundamental solution of the stochastic differential equation
dét :b(gtvt) dt+A(£t7t) - dwy (3.1)

which we assume to globally satisfy the hypotheses of the theorem existence and uniqueness of solutions. In other
words for any initial data (x, , t,) we have that

§ = i (@0, 1o) 3.2)
for t > t, solves (3.1). To (3.1) also we associate the generator
Lo =b(x,t) 0y + %G (x,t) : Op ® Op (3.3)
with
G = AAT (3.4)



3.1 Exit time form a domain

Let A a smooth bounded open subset of R?. The stopping time

Toe=inf {t <t1 < T| ¢y, (1) € DA} 3.5)
1

specifies the time when the diffusion process starting from & € A at time ¢ exists for the first time the domain A
during a time horizon [t, T').

Proposition 3.1. Under the above hypotheses, for any x € A we have

E(tes NT —1t) = f(2,1) (3.6)
for
(O + La)f (m,1) = —1 (3.7a)
f(@, ) [zea =0 (3.7b)
fG.T)=0 (3.7¢)
More generally for we have
E(Tet NT — )" = gy, (2, 1) (3.8)
for go(x,t) =1
(0 + L2) gn (z,1) = —ngn—1 (x,1) (3.9a)
gn (@) lzea =0 (3.9b)
gn (T) laen =0 (3.9¢)

Proof. By Dynkin’s formula we have for any sufficiently regular f
f (¢Tm,t/\T7 Ta,t N\ T) = f (:E, t) +
Tmyt/\T Te AT
/ ds (as+£¢s)f (¢s78) +/ [A (¢s7s) dws] ‘8¢Sf(¢8,8)
t t
If furthermore f satisfies (3.7)) then
Tm,t/\T
Tm,t/\T_t:f(mat)+/ [A(¢sas)'dws} '6¢Sf(¢sas)
t

Taking averages proves (3.6). In general, using (3.15b)), in Dynkin’s formula for ¢; > ¢ yields

Tm,t/\T Tm’t/\T
gn (0, 12) = — / 05 (0, + L.) gn (b, ) — / A ($y.5) - dw,] -0y, g (S5, 9)

t1 t1



If we furthermore impose (3.15a) we get into
Tmyt/\T Ta g NT
met)=—n [ ds [T 0+ 2o, 001 (600)
t s
T NT T
-n / dS / [A (¢51781) : dwsl] ’ ad)sl gn—l (¢817 81)
t s

T g NT'
- / A ($s.5) - dwy] - 0, gn1 (3, 5) (3.10)

Iterating n-times gives

szt/\T n—2 Tmﬁt/\T Tm,z/\T
gn (z,t) =T(n+ 1)/ dso H / dskH/ ds;
¢

k=0"Y Sk Sn—1
7’L + 1 T g NT -2 Tt NT Tt NT'
*Z T =13 1) / dso H/ d5k+1/ (A (¢, 51) - dws] - Dy, g1 (bs,: 1)
k—0 " Sk S1—1
Tmyt/\T
_/ [A (¢s> 5) : dws] : a¢sgn71 (¢s7 S) (3.11)
t

Taking the average finally yields
Tz:,t/\T n—2 Tw,t/\T Twﬂt/\T
gn(x,t) =T(n+ 1)E/ dso H / dsg+1 / ds; =E(rgy NT —t)"
t k=0 Y 5k Sn—1
whence the claim. O
Some observations are in order.
e The boundary conditions associated to (3.15) admit a direct interpretation.

— (3.15D) states that if the process starts from the boundary the time it takes to reach them is (tautologically)
zero.

- states that if the process starts at time ¢ = 7' then the random variable
e AT =T =0 (3.12)
by construction.

o If the drift and diffusion vector fields are time-independent, time translation invariance is broken only by the
final condition. Hence we must have (3.13)

E(tet AT — )" = gn(x, t;T) = gn(x,0; T —t) (3.13)

e For an infinite time horizon

N (g AT —t) = 7 (3.14)
T1oo

Namely by (3.13) the solution of (3.15) must converge to a time independent one solving on its turn the problem

b(x) - 00 + L6(2) : 00 @ s | g0 (@) = —ngu 1 (@) (3.152)



In (Z,") leer =0 (3.15b)
9o (z,1) =1 (3.15¢)

It is possible to recover the above results starting from the forward Kolmogorov (Fokker-Planck) equation. Consider
for any x, € A the problem with absorbing boundary conditions

1
Op+ O0g - (bp) = 5(% ® Oy : (Gp) (3.16a)
Plzcon =0 (3.16b)
; — 5@ (p _
%ﬁrjp 0'Nx — x,) (3.16¢)

The interpretation of absorbing boundary conditions is of removing from the transition probability all those trajectories
that for times s € [t,, t] reached the boundary. Therefore

P(Tat, 2 1) = [ dsp, (@t 2oty
A
whence we infer
pTwo,to (t) = _8t/ ddxpg (w7 t ’ xm tO)
A

It follows immediately that

T ')
E(ra,0, AT — to)" = / 0t (t — to)" pra. . (1) + (T — )" / dtpro. . (1)
to T

whence it is straightforward to recover the equation for the moments of the stopping time. Namely if we differentiate
with respect to t,

T
O E(Tgoto NT —to)" = —n / dt (t — t(,)”‘1 Pray 1, ()
to

—n (T —t)"! / At Pro, .. (t) + Lo BTty AT — to)" (3.17)
T

Inspection of the result allows us to recognize that

8togn(w07 to) =N gn—l(a:o’ to) - smogn(wm to) (3.18)

which is the result we set out to obtain.

3.2 Hitting one part of a boundary first

Suppose now that the boundary 9A of a A a smooth, bounded, and open subset of R can be decomposed as

O0A =By + By




with B; ¢ = 1,2 smooth. To any «, € A we can associate the stopping time

Ta e = i0f {t <t1 < T[ ¢y, (x,1) € Bi} i=1,2 (3.19)
1

through the mapping defined by the fundamental solution of (3.1).

Proposition 3.2. The probability that ¢ (x,t1) hits first By is specified by the solution of

(O + L) u(x,t) =0 (3.20a)
u(z, ) |zer, =1 & u(w,-) |gem, =0 (3.20b)
1 VxeB
uw(x,T)|zem, = (3.20c)
0 Vee AUB,

Proof. By Dynkin’s formula we have

t1 t
U (d)tl (x7t) 7t1> =u (x7t> + / ds (as + 2(15@) U (¢sa S) + A [A (¢sa S) : dws] : a(i)éu <¢s7 3)
t
Upon setting t1 = 7p, |, and requiring u(x, t) to satisfy 1! the average of the Dynkin’s formula above yields

P (TIB%1|w,t S TA 7'1532|w7t) =Uu (3}', t)

Again the boundary conditions admit a direct interpretation
e (3.20b)) means that if the process starts for ¢ < 7" from B; or By the event is certain.

e (3.20c) means that if the process starts for t = 7' the event is also certain because B; can be reached for times
less than T only if the diffusion starts from B;.

4 Recurrence of the Wiener process

Let w; a d-dimensional Wiener motion

& = [[will
then
wy - dw
dé, = ddt +2/& W
The stochastic process
tawsg - dw,

enjoys the following properties



e Vanishing first moment
En =0
e Correlation function coinciding with that of the Wiener process

to Aty
Wt - W
E’I?t277t1 = /O dt = t2 A tl

e Gaussian statistics: suppose t; < tg < --- < to,

- dw - dw L
EH L_g H — Tl S (ty, — tzn—1)dt2n:--~=H5(t2i—t2i—1)dt2i 4.1)
[ | T 11
On the other hand
mAl
EJ] —2—%=0 (4.2)
1

e Independent increments

_ /t+to Ws * dws
e = e = ), e

o

Hence 7; is statistically equivalent to a Wiener process:

d¢, = ddt + 2+/&dw,

We can ask whether the Wiener process leaves a ball of radius I around the origin before hitting the origin itself. To
answer such question we need to solve for some 0 < e <1

0 =dd,u+220%u (4.3a)

u(e) =0 & u(R)=1 (4.3b)

A straightforward calculation yields

d
B g
u(w) = P (1op < Trpp) = 1R1R2 _1812
n —1nr
InR —Ine d=2
We observe
1/2
lim P (Te‘w < TR‘:B) _ - (E) d=1
el0 0 d> 2

In two dimensions, nevertheless

}lzlgn P (Ta|x < TR|x) =1

meaning that the process is recurrent in the sense that if G is any open set

P(||lw|] € G) =1
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