
Forward Master equation and forward Kolmogorov equation
(Fokker-Planck) equation

1 Heuristics for diffusion processes

Let us, as usual, denote by φt the diffusion process describing fundamental solution of the Ito stochastic differential
equation

dξt = b (ξt, t) dt+ A(ξt, t) · dωt (1.1)

As before we define the diffusivity matrix as G := AA† For any given initial condition xo at time to we have for t ≥ 0

pξ(x, t, |xo, to) = E δ(d)(x− φt(to,xo))

Differentiating both sides with respect to time applying Ito lemma and the martingale property of stochastic increments
we get into

∂tpξ(x, t, |xo, to) = ∂tE δ
(d)(x− φt(to,xo))

E

{[
b (φt, t) · ∂φt

+
1

2
G (φt, t) : ∂φt

∂φt

]
δ(d)(x− φt(to,xo))

}
Using the translational invariance of the δ-function we can write the right hand side as

∂tpξ(x, t, |xo, to) =

E

{[
−b (φt, t) · ∂x +

1

2
G (φt, t) : ∂x∂x

]
δ(d)(x− φt(to,xo))

}
and then carry the derivatives over the average sign

∂tpξ(x, t, |xo, to) =

−∂x · E b (φt, t) δ
(d)(x− φt(to,xo)) + ∂x∂x : E

G (φt, t)

2
δ(d)(x− φt(to,xo))

From the properties of the δ-function we finally conclude

∂tpξ(x, t, |xo, to) = ∂x · J(x, t, |xo, to) (1.2a)

J(x, t, |xo, to) = −b (x, t) pξ(x, t, |xo, to) + ∂x ·
[
G (x, t)

2
pξ(x, t, |xo, to)

]
(1.2b)

We thus derived the Fokker-Planck equation:

∂tpξ = −∂x · (b pξ) +
1

2
∂x∂x : (Gpξ) (1.3)

In the probabilistic literature (1.2a) or equivalently (1.3) are referred to as forward Kolmogorov equation. The describe
the forward in time t evolution of a transition probability density satisfying under our hypothesis the initial condition

lim
t→to

pξ(x, t, |xo, to) = δ(d)(x− xo) (1.4)
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2 Master equation for Markov processes with jumps

Proposition 2.1. Let us suppose that the S-valued Markov process ξt satisfies for t ∈ [to, tf ] the hypotheses i (jump
condition), ii (drift condition), iii (diffusivity condition) of lecture 14. Then as function of the conditioned event the
transition probability density of the Markov process satisfies the integro-differential equation

(∂t − L†x)p(x, t|·) =

∫
S
− ddz [Kt(x|z)p(z, t|·)−Kt(z|x)p(x, t|·)] (2.1)

where
∫
S− is the principal value integral and L is the adjoint of the continuous part of the generator of the process.

Proof. Let f be an arbitrary, smooth and integrable test function. The we have

∂tE•f(ξt) = ∂t

∫
S
ddx f(x) p(x, t | ·)

= lim
dt↓0

∫
S2
ddx ddz

f(x)− f(z)

dt
p(x, t+ dt | z , t) p(z, t | ·) (2.2)

For arbitrary ε we can define

V ε
z := {x ∈ S | ‖ x− z ‖≤ ε} (2.3)

and V̄ ε
z := S/V ε

z . We have on the one hand∫
V ε
z

ddx
f(x)− f(z)

dt
p(x, t+ dt | z , t)

=

∫
V ε
z

ddx

[
(x− z) · ∂z + 1

2(x− z)⊗ (x− z) : ∂z ⊗ ∂z
dt

f(z) + o(‖ x− z ‖2)

]
p(x, t+ dt | z , t) (2.4)

Taking the first the limit dt ↓ 0 and then ε ↓ 0 since the drift and diffusivity conditions hold for arbitrary ε we obtain

lim
ε↓0

∂tE•f(ξt)11V ε
z

=

∫
S
ddx (Lxf)(x, t) p(x, t | ·) (2.5)

On the other hand, we have by the jump-rate condition i

lim
dt↓0

∫
V̄ ε
z×S

ddx ddz
f(x)− f(z)

dt
p(x, t+ dt | z , t) p(z, t | ·)

=

∫
V̄ ε
z×S

ddx ddz [f(x)− f(z)] Kt(x | z) p(z, t | ·) = ∂tE•f(ξt)11V̄ ε
z

(2.6)

Gathering the two contributions we obtain∫
S
ddx f(x)

{
(∂t − L†x)p(x, t | ·)−

∫
S
− ddz [Kt(x | z) p(z, t | ·)−Kt(z |x) p(x, t | ·)]

}
= 0 (2.7)

where in general∫
S
ddx f(x)L†xp(x, t | ·) =

−
∫
∂S
dd−1x [f(x)n · J(x, t|·) + p(x, t|·)n · ∂xf(x)] +

∫
S
ddx f(x)∂x · J(x, t|·) (2.8a)

J(x, t|·) := −b(x, t) p(x, t|·) +
1

2
∂x · G(x, t) p(x, t|·) (2.8b)

for n the unit vector orthogonal and outwards pointing to ∂S. The arbitrariness of f implies that the (2.7) vanishes
generically only if the argument of the curly brackets vanishes, as claimed.
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3 Forward Kolmogorov equation (Fokker-Planck) equation

The adjoint L† reduces to the differential operation

L† = −b(x, t) · ∂x + ∂x ⊗ ∂x : G(x, t) (3.1)

if

f(x)n · J(x, t|·) + p(x, t|·)n · ∂xf(x) = 0 (3.2)

for all x ∈ ∂S. There are at least four interesting cases when this circumstance occurs.

• Probability conservation:

n · J(x, t|·) = 0 ∀x ∈ ∂S (3.3)

The geometric interpretation of this condition is intuitive. The vanishing of the probability current on the
boundary of the domain S should enforce probability conservation: if we formally write the current as the sum

J = Joutwards + J inwards such that
n · Joutwards|S ≥ 0

n · J inwards|S < 0

we can interpret (3.3) as a reflecting boundary condition: all incoming trajectories from the interior of Ad to the
boundary ∂S are subsequently reflected to the interior of S.

In order (3.9) the condition must be accompanied by

n · ∂xf(x) = 0 ∀x ∈ ∂S (3.4)

This second condition in the proof of the proposition above appears as constraint on the admissible test functions
f . This is also a constraint on the functional space dual to the transition probability density of the Markov
process. More explicitly the Chapman-Kolmogorov equation for any t2 ≥ t1

p(x2, t2 |x1, t1) =

∫
S
ddx p(x2, t2 |x, t) p(x, t |x1, t1) (3.5)

requires

0 = ∂tp(x2, t2 |x1, t1) = −
∫
S
ddx [(Lxp)(x2, t2 |x, t) p(x, t |x1, t1) + p(x2, t2 |x, t) ∂tp(x, t |x1, t1)](3.6)

Combining this latter equation with (3.1) and (3.3) imposes that

n · ∂xp(· |x, t) = 0 ∀x ∈ ∂S (3.7)

is the boundary condition satisfied by the backward Kolmogorov equation if probability is to be conserved in S.

• Probability absorption:

p(x, t|·) = 0 ∀x ∈ ∂S (3.8)

By (3.6) this condition entails

f(x) = p(·|x, t) = 0 ∀x ∈ ∂S (3.9)

for elements on the dual space.

• S unbounded (e.g. S = Rd): integrability requires (3.3) and (3.8) to coincide

• S = Td: periodic boundary conditions.
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