
Stochastic calculus with Hermite polynomials and stochastic differential
equations

1 Introduction

The proof of the existence and uniqueness theorem for stochastic differential equations can be found in chapter 5 of
[1].

2 Stochastic calculus with Hermite polynomials

This section expands example D.3 of chapter 4 of [1].

Proposition 2.1. the transition probability of the Wiener process admits the expansion
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Proof. Let us postulate for the n-th order of the Taylor expansion the form
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we can then calculate the explicit form of the polynomial hn. Namely
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Observing that powers of p are generated by taking derivatives with respect to x we get into
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Performing the integral and contrasting the left to the right hand side yields the claim.
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The polynomials hn defined by (2.1) are called the Hermite polynomials. It is readily checked that they enjoy the
scaling property

hn(λx , λ2 t) = λnhn(x , t) ⇒ (x ∂x + 2 t∂t)hn(x , t) = nhn(x , t)

Furthermore

Proposition 2.2. The expected value of an Hermite polynomial having for argument a Wiener process starting at x is
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Proof.
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integrating by parts yields the claim.

The reason why the expectation value is preserved is that the differential of Hermite along realizations of the
Wiener process takes the form.

Proposition 2.3. The differential of Hermite polynomials of the Wiener process is

dhn(wt, t) = dwt∂wthn(wt, t)

Proof. By Ito lemma we have
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Such result can be achieved by direct calculation. It is instructive to proceed in a slightly indirect way. For any t > 0
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as each of these multiply positive definite terms of different order in y.

We have therefore a probabilistic interpretation of the statistical conservation law
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2.1 Recursion relation and multiple integrals over the Wiener process

Proposition 2.4. Stochastic integrals over Hermite polynomials satisfy the simple recursion relation∫ t
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Proof. Consider the exponential process:
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If we differentiate an arbitrary number of times with respect to λ we then obtain
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Contrasting the left-hand side with the definition of Hermite polynomials we conclude
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We have therefore proved that
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An important consequence is the following. Since
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3 Existence and uniqueness theorem

Theorem 3.1 (Existence and uniqueness). Suppose that for some T ∈ R+

b : Rd × [0, T ]→ Rd

and

A : Rd×d × [0, T ]→ Rd×m

are continuous and satisfy the following conditions in the Euclidean norm

||b (x, t)− b (y, t) || < C ||x− y|| & ||A (x, t)− A (y, t) || < C ||x− y||

and

||b (x, t) || < C (1 + ||x||) & ||A (x, t) || < C (1 + ||x||)

for all 0 ≤ t ≤ T and some positive constant C. Let also ξo

ξo : Ω→ Rd

a random variable such that

E||ξo||2 < ∞

Furthermore ξo is independent of the σ-algebraW generated by a given m-dimensional Wiener process for t ≥ 0.
Then, there exists a unique solution of

dξt = b(ξt, t) dt+ A(ξt, t) · dwt (3.1a)

ξ0 = ξo (3.1b)

Uniqueness here means that any square integrable ξt and ξ̃t with continuous paths, satisfying (3.1a), (3.1b) then for
all 0 ≤ t ≤ T

ξt = ξ̃t a.s.

3.1 Example: absence of Lipschitz continuity

Consider the ordinary differential equation:

ξ̇ = Cξ1/3

The field

f = C x1/3

is not differentiable in zero therefore not Lipschitz continuous there. As a consequence the equation has multiple
solutions

ξt =

{
0 t < to
C̃ t3/2 t ≥ to

for arbitrary to.

4



4 Solution by iteration

If b and A are smooth

ξt = ξo +
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We then apply Ito lemma to b and A and iterate. In such a way the solution is constructed as a power series in t and
wt.

Example 4.1 (1d-linear case). Consider the Ito SDE

dξt =
ξt
τ
dt+ σ ξtdwt (4.2)
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The new Ito stochastic differential equation is
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If we apply the recursion equations (4.1) we get into
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