Brownian motion

1 Introduction

Brownian motion is discussed in chapter 3 of [1].

2 Finite dimensional distributions of a stochastic process

Definition 2.1 (Stochastic process). A collection of random variables $\left\{\xi_{t} \mid t \geq 0\right\}$

$$
\boldsymbol{\xi}: \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}
$$

is called a stochastic process.
Realizations of stochastic process are now paths rather than numbers:
Definition 2.2 (Sample path). For each $\omega \in \Omega$ the mapping

$$
t \rightarrow \boldsymbol{\xi}_{t}(\omega)
$$

is called the sample path of the stochastic process.
In most applications stochastic processes are characterized by means of the family of all finite dimensional joint distributions associated to them. This means that for a stochastic process valued on \mathbb{R}, for any discrete sequence $\left\{t_{i}\right\}_{i=1}^{n}$ we consider the Borel σ-algebra $\mathcal{B}\left(\mathbb{R}^{n}\right)$ and $B_{1}, \ldots, B_{n} \mathcal{B}$ and consider

$$
P_{\xi_{t}}\left(B_{1}, t_{1}, \ldots, B_{n}, t_{n}\right) \equiv P\left(\xi_{t_{1}} \in B_{1}, \ldots, \xi_{t_{n}} \in B_{n}\right)
$$

The so defined families of joint probability yield a consistent description of a stochastic process

$$
\boldsymbol{\xi}: \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}
$$

if the following Kolmogorov consistency conditions are satisfied
i $P\left(\mathbb{R}^{d}, t\right)=1$ for any t
ii $P_{\xi_{t}}\left(B_{1}, t_{1}, \ldots, B_{n}, t_{n}\right) \geq 0$
iii $P_{\xi_{t}}\left(B_{1}, t_{1}, \ldots, B_{n}, t_{n}\right)=P_{\xi_{t}}\left(B_{1}, t_{1}, \ldots, B_{n}, t_{n}, \mathbb{R}^{d}, t_{m+1}\right)$
iv $P_{\xi_{t}}\left(B_{\pi(1)}, t_{\pi(1)}, \ldots, B_{\pi(n)}, t_{\pi(n)}\right)=P_{\xi_{t}}\left(B_{1}, t_{1}, \ldots, B_{n}, t_{n}, \mathbb{R}^{d}, t\right)$

3 Wiener process

The above definitions allow us to characterize the Wiener process as a stochastic process:
Definition 3.1 (Wiener Process aka Brownian motion). A real valued stochastic process

$$
w_{t}: \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}
$$

is called a Wiener process or Brownian motion if

$$
i w_{0}=0
$$

ii any increment $w_{t}-w_{s}$ has Gaussian probability density

$$
\begin{equation*}
w_{t}-w_{s} \stackrel{d}{=} \frac{e^{-\frac{x^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}} \tag{3.1}
\end{equation*}
$$

for all $t \geq s \geq 0$.
iii For all times

$$
t_{1}<t_{2}<\ldots \leq t_{n}
$$

the random variables

$$
w_{t_{1}}, w_{t_{2}}-w_{t_{1}}, \ldots, w_{t_{n}}-w_{t_{n-1}}
$$

are independent (the process has independent increments).

3.1 Consequences of the definition

Some observations are in order

- It is not restrictive to consider the one dimensional case. A d-dimensional Wiener process a vector valued stochastic process whose components are each independent one-dimensional Wiener processes. More explicitly, the probability density of Brownian motion on \mathbb{R}^{d} is given by

$$
p_{\boldsymbol{w}_{t}}(\boldsymbol{x})=\prod_{i=1}^{d} p_{w_{t}^{i}}\left(x_{i}\right)
$$

- By i and $i i$ we have that

$$
\begin{equation*}
p_{w_{t}}(x)=\frac{e^{-\frac{x^{2}}{2 \sigma^{2} t}}}{\left(2 \pi \sigma^{2} t\right)^{\frac{1}{2}}} \quad \& \quad p_{w_{t_{2}}-w_{t_{1}}}(x)=\frac{e^{-\frac{x^{2}}{2 \sigma^{2}\left(t_{2}-t_{1}\right)}}}{\left[2 \pi \sigma^{2}\left(t_{2}-t_{1}\right)\right]^{\frac{1}{2}}} \quad t_{2}>t_{1} \tag{3.2}
\end{equation*}
$$

By $i i i$ The joint probability of $w_{t_{1}}$ and $w_{t_{2}}-w_{t_{1}}$ is

$$
p_{w_{t_{1}}, w_{t_{2}}-w_{t_{1}}}\left(x_{1}, y\right)=\frac{e^{-\frac{x_{1}^{2}}{2 \sigma^{2} t_{1}}}}{\left(2 \pi \sigma^{2} t_{1}\right)^{\frac{1}{2}}} \frac{e^{-\frac{y^{2}}{2 \sigma^{2}\left(t_{2}-t_{1}\right)}}}{\left[2 \pi \sigma^{2}\left(t_{2}-t_{1}\right)\right]^{\frac{1}{2}}}
$$

By definition of probability density we can also write

$$
p_{w_{t_{1}}, w_{t_{2}}-w_{t_{1}}}\left(x_{1}, y\right)=p_{w_{t_{1}}, w_{t_{2}}-x_{1}}\left(x_{1}, y\right)=p_{w_{t_{1}}, w_{t_{2}}}\left(x_{1}, y+x_{1}\right)
$$

since

$$
w_{t_{2}}=\left(w_{t_{2}}-w_{t_{1}}\right)+w_{t_{1}}
$$

Recalling the definition of conditional probability we must also have

$$
p_{w_{t_{1}}, w_{t_{2}}}\left(x_{1}, y+x_{1}\right)=p_{w_{t_{2}} \mid w_{t_{1}}}\left(x_{1}+y, t_{2} \mid x_{1}, t_{1}\right) p_{w_{t_{1}}}\left(x_{1}\right) \quad \forall x_{1}, x_{2}, t_{2}>t_{1}
$$

whence

$$
p_{w_{t_{2}} \mid w_{t_{1}}}\left(x_{1}+y, t_{2} \mid x_{1}, t_{1}\right)=\frac{p_{w_{t_{1}}, w_{t_{2}}}\left(x_{1}, y+x_{1}\right)}{p_{w_{t_{1}}}\left(x_{1}\right)}=\frac{p_{w_{t_{1}}, w_{t_{2}}-w_{t_{1}}}\left(x_{1}, y\right)}{p_{w_{t_{1}}}\left(x_{1}\right)}=\frac{e^{-\frac{y^{2}}{2 \sigma^{2}\left(t_{2}-t_{1}\right)}}}{\left[2 \pi \sigma^{2}\left(t_{2}-t_{1}\right)\right]^{\frac{1}{2}}}
$$

Finally, upon setting $x_{2}=y+x_{1}$ we get into:

$$
p_{w_{t_{2}} \mid w_{t_{1}}}\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)=\frac{e^{-\frac{\left(x_{2}-x_{1}\right)^{2}}{2 \sigma^{2}\left(t_{2}-t_{1}\right)}}}{\left[2 \pi \sigma^{2}\left(t_{2}-t_{1}\right)\right]^{\frac{1}{2}}}
$$

3.2 Continuity and non-differentiability of the Wiener process

Proposition 3.1. - for each $\gamma \in(1 / 2,1]$ and almost every realization ω (i.e. with $\mathrm{P}=1$)

$$
\begin{equation*}
w_{t}(\omega): \mathbb{R}_{+} \mapsto \mathbb{R} \tag{3.3}
\end{equation*}
$$

is nowhere Hölder continuous with exponent γ.

- The paths of Brownian motion are nowhere differentiable with probability one.

For each 1 For each 1 ; 1 and almost every, $t W(t$,) is
Proof. Let aus fix $N \in \mathbb{N}$ large enough that

$$
\begin{equation*}
n\left(\gamma-\frac{1}{2}\right)>1 \tag{3.4}
\end{equation*}
$$

We say that a path w_{t} is Hölder continuous with exponent γ for som $s \infty I$ if

$$
\begin{equation*}
\left|w_{t}-w_{s}\right| \leq C|t-s|^{\gamma} \tag{3.5}
\end{equation*}
$$

for all $t \in I$ and for some $C>0$. Let us suppose $I=[0,1]$. Let us now define the label

$$
\lceil N s\rceil=\left\{\begin{array}{lll}
N s & \text { if } & n s \in \mathbb{N} \tag{3.6}\\
i & \text { if } & 1>i-N s>0
\end{array}\right.
$$

for $N \in \mathbb{N}$ such that

$$
\begin{equation*}
N \gg n \tag{3.7}
\end{equation*}
$$

The range of values

$$
\begin{equation*}
j=\lceil N s\rceil, \ldots,\lceil n s\rceil \cdots+n-1 \tag{3.8}
\end{equation*}
$$

taken by the integer label j are then such that

$$
\begin{equation*}
s \leq \frac{j}{N} \leq s+\frac{n}{N} \leq 1 \tag{3.9}
\end{equation*}
$$

We have then that if (3.5) holds true

$$
\begin{align*}
& \left|w_{\frac{j+1}{N}}-w_{\frac{j}{N}}\right| \leq\left|w_{\frac{j+1}{N}}-s\right|+\left|w_{\frac{j}{N}}-s\right| \\
& \quad \leq C\left|\frac{j+1-N s}{N}\right|^{\gamma}+C\left|\frac{j-N s}{N}\right|^{\gamma} \leq \frac{2 C n^{\gamma}}{N^{\gamma}} \tag{3.10}
\end{align*}
$$

We can therefore pick some integer M such that

$$
\begin{equation*}
2 C n^{\gamma} \leq M \tag{3.11}
\end{equation*}
$$

for some integer M. Let us now define the event

$$
\begin{equation*}
F_{M, N}^{i}=\left\{\left.\omega \in \Omega| | w_{\frac{j+1}{N}}-w_{\frac{j}{N}} \right\rvert\, \leq \frac{M}{N^{\gamma}}, \text { for all } j=i, \ldots, i+n-1\right\} \tag{3.12}
\end{equation*}
$$

for which (3.10) holds true. The Wiener process is Hölder continuous at some time $s \in[0,1]$ if there exist an integer M and an integer N such that for any $k>N$ there exists some $i=1, \ldots, N$ such that

$$
\begin{equation*}
\mathrm{P}\left(F_{M, N}^{i}\right)>0 \tag{3.13}
\end{equation*}
$$

The formal expression of the aforementioned condition is

$$
\begin{equation*}
F=\bigcup_{M=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{k=N}^{\infty} \bigcup_{i=1}^{N} F_{M, N}^{i} \tag{3.14}
\end{equation*}
$$

In particular if we show that

$$
\begin{equation*}
\bar{F}_{M, N}=\bigcap_{k=N}^{\infty} \bigcup_{i=1}^{N} F_{M, N}^{i} \tag{3.15}
\end{equation*}
$$

has probability zero then we proved that the Wiener process is nowhere Hólder continuous with exponent γ. Since $\bar{F}_{M, N}$ is telescopic

$$
\begin{align*}
& \mathrm{P}\left(\bar{F}_{M, N}\right) \leq \lim _{N \uparrow \infty} \inf _{N} \mathrm{P}\left(\bigcup_{i=1}^{N} \bar{F}_{M, N}^{i}\right) \\
& \quad \leq \lim _{N \uparrow \infty} \sum_{i=1}^{n} \mathrm{P}\left(\bar{F}_{M, N}^{i}\right) \leq \lim _{N \uparrow \infty} N\left[\mathrm{P}\left(\left|w_{\frac{1}{N}}\right| \leq \frac{M}{N^{\gamma}}\right)\right]^{n} \tag{3.16}
\end{align*}
$$

The last inequality follows because the Wiener product has independent and stationary increments

$$
\begin{equation*}
w_{\frac{j+1}{N}}-w_{\frac{j}{N}} \stackrel{d}{=} w_{\frac{1}{N}} \tag{3.17}
\end{equation*}
$$

We can compute the probability

$$
\begin{equation*}
\mathrm{P}\left(\left|w_{\frac{1}{n}}\right| \leq \frac{M}{N^{\gamma}}\right)=\int_{-\frac{M}{N \gamma}}^{\frac{M}{N^{\gamma}}} d x \frac{e^{-\frac{N x^{2}}{2}}}{\sqrt{2 \pi N^{-1}}} \leq \tilde{K} N^{\frac{1}{2}-\gamma} \tag{3.18}
\end{equation*}
$$

We see that it goes to zero for any $\gamma>1 / 2$. Furthermore

$$
\begin{equation*}
\mathrm{P}\left(\bar{F}_{M, N}\right) \leq \tilde{K} \lim _{N \uparrow \infty} N^{1+n\left(\frac{1}{2}-\gamma\right)}=0 \tag{3.19}
\end{equation*}
$$

since we hypothesized (3.4).

3.2.1 Observations

- In probability Hölder continuity can be argued by elementary considerations

$$
\begin{equation*}
\mathrm{P}\left(\left|w_{t}\right|>\epsilon\right)=2 \int_{\varepsilon}^{\infty} d x \frac{e^{-\frac{x^{2}}{2 t}}}{\sqrt{2 \pi t}} \leq 2 \int_{\varepsilon}^{\infty} d x \frac{x}{\varepsilon} \frac{e^{-\frac{x^{2}}{2 t}}}{\sqrt{2 \pi t}}=\sqrt{\frac{2 t}{\pi}} \frac{e^{-\frac{\varepsilon^{2}}{2 t}}}{\varepsilon} \tag{3.20}
\end{equation*}
$$

For any

$$
\begin{equation*}
\varepsilon=K t^{\gamma} \quad K>0 \tag{3.21}
\end{equation*}
$$

the probability tends to zero if $\gamma<1 / 2$. The conclusion is that in probability

$$
\begin{equation*}
\left|w_{t}\right| \leq K t^{\gamma} \quad 0<\gamma<\frac{1}{2} \tag{3.22}
\end{equation*}
$$

- An indication of non-differentiability comes from the evaluation of the expected value of the absolute value of the incremental ratio of the Wiener process:

$$
\begin{equation*}
\mathrm{E} \frac{\left|w_{t}\right|}{t}=2 \int_{0}^{\infty} d x \frac{x}{t} \frac{e^{-\frac{x^{2}}{2 t}}}{\sqrt{2 \pi t}}=\sqrt{\frac{2}{\pi t}} \tag{3.23}
\end{equation*}
$$

which diverges as t tends to zero.

- The probability density of

$$
\begin{equation*}
\eta_{t}=\frac{w_{t}}{t} \tag{3.24}
\end{equation*}
$$

is

$$
\begin{equation*}
\mathrm{p}(x)=\sqrt{\frac{t}{2 \pi}} e^{-\frac{t x^{2}}{2}} \tag{3.25}
\end{equation*}
$$

whence for any $0 \leq L<\infty$

$$
\begin{equation*}
\lim _{t \downarrow 0} \mathrm{P}(-L \leq \eta \leq L)=\lim _{t \downarrow 0} \int_{-L}^{L} d x \sqrt{\frac{t}{2 \pi}} e^{-\frac{t x^{2}}{2}}=0 \tag{3.26}
\end{equation*}
$$

This fact indicates that the probability concentrates at infinity.

4 Markov processes and Chapman-Kolmogorov equation

A special important class of non-anticipating stochastic processes are Markov processes
Definition 4.1. Let $\mathcal{F}_{[0, t]}^{\xi}$ the filtration generated by a stochastic process ξ_{t}. Then ξ_{t} is Markov iffor any $t \geq s$ and any event A

$$
\begin{equation*}
P\left(\xi_{t} \in A \mid \mathcal{F}_{[0, s]}^{\xi}\right)=P\left(\xi_{t} \in A \mid \mathcal{F}_{s}^{\xi}\right)=P\left(\xi_{t} \in A \mid \xi_{s}\right) \tag{4.1}
\end{equation*}
$$

This means that the state of the system at time s fully specify further evolution independently of what happened before for times smaller s. The system has no "memory". In particular if the transition probability p density of the Markov process $\xi_{t}: \Omega \times I \mapsto \mathbb{R}$ is available

$$
\begin{equation*}
P\left(\xi_{t} \in A \mid \xi_{s}=y\right)=\int_{A} d x p(x, t \mid y, s) \tag{4.2}
\end{equation*}
$$

then the definition of Markov process implies that the Chapman-Kolmogorov equation

$$
\begin{equation*}
p\left(x_{2}, t_{2} \mid x_{0}, t_{0}\right)=\int_{\mathbb{R}} d x_{1} p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) p\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) \tag{4.3}
\end{equation*}
$$

must hold true for any $\left(x_{2}, x_{0}\right)$ and for any $t_{i}, i=0,1,2$.

4.1 Quadratic variation of the Wiener process

In the case of the Wiener process we have
Proposition 4.1 (Quadratic variation of the B.M.). The quadratic variation of the Brownian motion in $[0, t]$ for any $t \in \mathbb{R}_{+}$

$$
V_{[w, w]}(I)=t
$$

in the sense of $\mathbb{L}^{2}(\Omega)$.
Proof. By direct calculation we know that

$$
\begin{equation*}
\mathrm{E} w_{t}^{2}=t \tag{4.4}
\end{equation*}
$$

Let p_{n} a partition paving $[0, t]$ with n sub-intervals:

$$
Q_{n}:=\sum_{\mathrm{p}_{n}}\left(w_{t_{k}}-w_{t_{k-1}}\right)^{2}
$$

we have then

$$
\mathrm{E}\left(Q_{n}-t\right)^{2}=\mathrm{E} \sum_{k l \in \mathbf{p}_{n}}\left[\left(w_{t_{k}}-w_{t_{k-1}}\right)^{2}-\left(t_{k}-t_{k-1}\right)\right]\left[\left(w_{t_{l}}-w_{t_{l-1}}\right)^{2}-\left(t_{l}-t_{l-1}\right)\right]
$$

For non-overlapping intervals, the averaged quantities are independent random variables with zero average. The only contributions to the sum come from overlapping intervals:

$$
\mathrm{E}\left(Q_{n}-t\right)^{2}=\mathrm{E} \sum_{k \in \mathfrak{p}_{n}}\left[\left(w_{t_{k}}-w_{t_{k-1}}\right)^{2}-\left(t_{k}-t_{k-1}\right)\right]^{2}=2 \sum_{k \in \mathfrak{p}_{n}}\left(t_{k}-t_{k-1}\right)^{2}
$$

whence

$$
\mathrm{E}\left(Q_{n}-t\right)^{2} \leq 2 t \max _{k \in \mathrm{p}_{n}}\left(t_{k}-t_{k-1}\right) \xrightarrow{\max _{k \in \mathrm{p}_{n}}\left(t_{k}-t_{k-1}\right) \downarrow 0} 0
$$

The finite value of the quadratic variation motivates the estimate

$$
d w_{t} \sim O(\sqrt{d t})
$$

for typical increments of the Wiener process.

References

[1] L. C. Evans. An introduction to stochastic differential equations. UC Berkeley, Lecture Notes, 2006.

