
Elements of Itô calculus

1 Introduction

The purely analytic introduction to Itô calculus given here is based on [1] (in French, english translation available as
an appendix in [4] 1). Another good reference is [3] in particular chapter I.

2 Functions of finite linear variation

Let I = [a, b] ∈ R and

f : I 7→ R (2.1)

a deterministic function.

Definition 2.1. We call the variation of f the quantity

V
(1)
[f ] (I) = sup

p

∑
ti∈p
|f(ti+1)− f(ti)| (2.2)

whether the sup is taken over the partitions {p} (see appendix A)) of I

By triangular inequality we also have

V
(1)
[f ] (I) = lim

|p|↓0

∑
ti∈p
|f(ti+1)− f(ti)| (2.3)

for p the mesh of the partition.

Proposition 2.1. If f ∈ C1(I) and ∫
I
dt

∣∣∣∣dfdt
∣∣∣∣ (t) <∞ (2.4)

then

V
(1)
[f ] (I) =

∫
I
dt

∣∣∣∣dfdt
∣∣∣∣ (t) (2.5)

Proof. Let

ḟ =
df

dt
(2.6)

1you can download the paper from http://wiki.helsinki.fi/download/attachments/79560764/Foellmer.pdf
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the chain of equalities holds

V
(1)
[f ] (I) = lim

|p|↓0

∑
ti∈p
|f(ti+1)− f(ti)| = lim

|p|↓0

∑
ti∈p
|ḟ(ti)|(ti+1 − ti)

= lim
|p|↓0

∑
ti∈p

∣∣∣∣∫ ti+1

ti

dt ḟ(t)

∣∣∣∣ = sup
p

∑
ti∈p

∣∣∣ḟ(ti)∣∣∣ (ti+1 − ti) =
∫
I
dt

∣∣∣∣dfdt
∣∣∣∣ (t) (2.7)

thus proving the claim.

Thus, trajectories solutions of ordinary differential equations

ẋt = v(xt) (2.8)

with v sufficiently smooth as customary in applications are functions of finite variation. A larger class of functions
includes those with discontinuities.

Definition 2.2. A function f : I 7→ R continuous from the right

lim
t↓to

f(t) = f(to) (2.9)

with limit from the left

lim
t↑to

f(t) = f(to−) (2.10)

is called a CADLAG function (French: Continue à Droite Limite à Gauche, less used English acronym CORLOL:
Continuous On the Right Limit On the Left).

The difference

J[f ](t) = f(t)− f(t−) (2.11)

is called a jump. A theorem from analysis guarantees that a function defined on an interval [a, b] can have no more
than countably many jumps (see e.g. [3] and refs therein).

a CADLAG function:
circles denote the limit
dots continuity at jump locations.

If a cadlag function varies only at jump locations J ∈ I we have

f(t) =
∑

s∈J∩{s:s≤t} J[f ](s)

V
(1)
[f ] (I) =

∑
s∈J |J[f ](s)|

(2.12)
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3 Quadratic (co)-variation

A classical example of a continuous function no-where differentiable is the Weierstrass function Wt : R 7→ R

Wt :=
∞∑
n=0

an cos (bn t) for

0 < a < 1

b ∈ 2N+ 1

a b > 1

(3.1)

G.H. Hardy [2] proved that the Weierstrass is everywhere continuous and non-differentiable. One can get an intuition
of the reason observing that

1. a sequence of continuous functions (i.e. approximations by finite sum) uniformly converging admits as a limit
a continuous function;

2. differentiating individual addends in the series one obtains

dWt

dt
” = ”−

∞∑
n=0

an bn sin (bn t) (3.2)

which is a diverging series.

Hardy also showed that

|Wt+h −Wt| ≤ C hα α = − ln a

ln b
(3.3)

A further consequence is that the Weierstrass function is not of finite variation. It makes sense to consider functions
of finite second variation:

Definition 3.1 (Quadratic (co-)variation). Let ξt : I 7→ R and χt : I 7→ R the limit

V
(2)
[ξ ,χ](I) = lim

|p(n)|↓ 0

∑
tk∈pn

(ξtk − ξtk−1
)(χtk − χtk−1

)

is called the quadratic co-variation of the processes. In particular

V
(2)
[ξ ,ξ](I) = lim

|p(n)|↓ 0

∑
tk∈pn

(ξtk − ξtk−1
)2

is called the quadratic variation of ξt.

Finiteness of the quadratic variation is possible only if the (first) variation of a function diverges. Namely∑
k

[f(tk)− f(tk−1)]2 ≤ max
k
|f(tk)− f(tk−1)|

∑
k

|f(tk)− f(tk−1)|

so that for a differentiable function∑
k

[f(tk)− f(tk−1)]2 ≤ max
k
|f(tk)− f(tk−1)|

∫ t

0
dt |f ′(t)|

maxk(tk−tk−1)→0
→ 0

In the case of the Wiener process the finiteness of the right hand side implies∑
k

|f(tk)− f(tk−1)|
maxk(tk−tk−1)→0

↑ ∞
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4 Differential calculus for functions of finite quadratic variation

Suppose xt : I 7→ R is a CADLAG function of finite quadratic variation. Then we have

V
(2)
[x ,x](I) = V

(2,c)
[x ,x] (I) +

∑
s∈J

J2
[x](s) (4.1)

where V c
[x ,x](I) is the quadratic variation of the continuous part of x and J denotes the set of the jump locations over

I . The following proposition shows that the jump component of the quadratic variation defines the atomic part of the
measure defined by V[x ,x](I). In other words, V c

[x ,x](I) defines a measure absolutely continuous with respect to the
Lebsegue measure

dV
(2,c)
[x ,x] ([0, t)) = g(xt) dt (4.2)

for some positive definite

g : R 7→ R+ (4.3)

whilst

d
∑
s∈J

J2
[x](s) =

∑
s∈J

dt (xs − xs−)2 δ(t− s) (4.4)

for some ri ∈ R+

Proposition 4.1. Let {pn}∞n=0 a sequence of partitions of the interval I . For any continuous function

f : I 7→ R (4.5)

the limit

lim
n↑∞

∑
t≥ti∈pn

f(xti) (xti+1 − xti)2 =
∫
(0,t)

dV
(2)
[x ,x]((0, s]) f(xs−) (4.6)

exists

Proof. Let C be the countable set of points in I where xt performs jumps of size strictly larger than O(ε2) for any
arbitrary ε > 0. Let also zt be the distribution function of finite-size jumps in I

zt =
∑

s∈C∩(0,t]

(xs − xs−) (4.7)

we have

lim
n↑∞

∑
t∈pn

f(xti) (zti+1 − zti)2 =
∑

t∈C∩(0,s]

f(xt−) (xt − xt−)2 (4.8)

Let now y be the discrete measure such that∑
ti∈pn∩(0,t]

(xti+1 − xti)2 =
∑

ti∈pn∩(0,t]

(yti+1 + zti+1 − yti + zti)
2 (4.9)
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i.e. the discrete approximant of the absolute continuous part of the measure defined by the quadratic variation of xt.
Then ∑

ti∈pn∩(0,t]

(xti+1 − xti)2 =∑
ti∈pn∩(0,t]

(yti+1 − yti)2 +
∑

ti∈pn∩(0,t]

(zti+1 − zti)2 + 2
∑

ti∈pn∩(0,t]

(zti+1 − zti)(yti+1 − yti) (4.10)

By definition of y the third term of the right hand side converges to zero and the measure associated to y weakly
converges to a measure the atomic part thereof only comprises jumps of size less equal O(ε2). It follows that

lim
n

sup

∣∣∣∣∣ limn↑∞∑
t∈pn

f(xti) (yti+1 − yti)2 −
∫
(0,t)

dV
(2,c)
[x ,x] ((0, s]) f(xs−)

∣∣∣∣∣ ≤ O(ε2) (4.11)

which proves the claim

Föllmer [1] proved the following theorem, which we reproduce here in abridged form.

Theorem 4.1. Let xt : [0, T ] 7→ R be a CADLAG function of finite quadratic variation and F ∈ C2(R). Then for
any t ∈ [0, T ] Itô’s formula

F (xt)− F (x0) =
∫ t

0
dxs (∂xF )(xs−)

+
1

2

∫ t

0
d V

(2,c)
[x ,x] ([0, s]) (∂

2
xF )(xs) +

∑
s∈J

[
F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)

]
(4.12)

holds with ∫ t

0
dxs (∂xF )(xs−) = lim

|pn|↓0

∑
tk∈pn

(xtk+1
− xtk) (∂xF )(xtk) (4.13)

holds true and the series in (4.13) is absolutely convergent.

Proof. Since xt is not of finite variation the difficulty of the proof is to prove (4.13). The strategy of the proof is to
prove the absolute convergence of the left hand side and of the other terms on the right hand side. As far as the left
hand side is concerned, by hypothesis xt is continuous to the right so guaranteeing the convergence

F (xt)− F (x0) = lim
|pn|↓0

∑
tk∈pn

[F (xtk+1
)− F (xtk)] (4.14)

since the addends give rise to alternating sums. Let us now distinguish two cases

1. Suppose now that xt is continuous. Then by Taylor’s formula

F (xtk+1
)− F (xtk) = (xtk+1

− xtk)(∂xF )(xtk) +
(xtk+1

− xtk)2

2
(∂2xF )(xt̃k) (4.15)

for some t̃k ∈ (tk, tk+1). We can rewrite the equality as

F (xtk+1
)− F (xtk) = (xtk+1

− xtk)(∂xF )(xtk)

+
(xtk+1

− xtk)2

2
(∂xF )(xtk) +

(xtk+1
− xtk)2

2
[(∂2xF )(xt̃k)− (∂2xF )(xtk)] (4.16)
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We then have

lim
|pn|↓0

∑
tk∈pn

(xtk+1
− xtk)

2[(∂2xF )(xt̃k)− (∂2xF )(xtk)]

≤ lim
|pn|↓0

max
tk∈pn

[(∂2xF )(xt̃k)− (∂2xF )(xtk)]
∑
tk∈pn

(xtk+1
− xtk)

2 → 0 (4.17a)

lim
|pn|↓0

∑
tk∈pn

(xtk+1
− xtk)

2 (∂2xF )(xtk) ≤ lim
|pn|↓0

max
tk∈pn

(∂2xF )(xtk)
∑
tk∈pn

(xtk+1
− xtk)

2 < ∞ (4.17b)

where (4.17a) holds because of the continuity of xt and F and (4.17b) since F is continuous over a finite closed
interval. Gleaning the information provided (4.14) and (4.17a)-(4.17b) we conclude that the claim (4.13) must
hold true.

2. Let us now turn to the general case of a CADLAG function. Let ε > 0 We divide the jumps of xt on [0, t] into
two classes:

(a) C1 ≡ C1(ε, t) with jumps of finite size;
(b) C2 ≡ C2(ε, t) such that

∑
s∈C2

J2
[x](s) ≤ ε

2.

We then write∑
tk∈pn

[
F (xtk+1

)− F (xtk)
]
=
∑
1

[
F (xtk+1

)− F (xtk)
]
+
∑
2

[
F (xtk+1

)− F (xtk)
]

(4.18)

where
∑

1 indicates the summation over those tk ∈ pn for which the interval ]tk, tk+1] contains a jump of class
C1. Clearly we have

lim
|pn|↓0

∑
1

[
F (xtk+1

)− F (xtk)
]
=
∑
s∈J

[F (xs)− F (xs−)] (4.19)

On the other hand we can apply Taylor’s formula to write∑
2

[
F (xtk+1

)− F (xtk)
]
=
∑
tk∈pn

[
(xtk+1

− xtk)(∂xF )(xtk) +
(xtk+1

− xtk)2

2
(∂2xF )(xtk)

]

−
∑
1

[
(xtk+1

− xtk)(∂xF )(xtk) +
(xtk+1

− xtk)2

2
(∂2xF )(xtk)

]
+

1

2

∑
2

(xtk+1
− xtk)

2R(t̃k, tk)(4.20)

with

R(t̃k, tk) :=
[
(∂2xF )(xt̃k)− (∂2xF )(xtk)

]
(4.21)

Furthermore ∑
tk∈pn

(xtk+1
− xtk)

2(∂2xF )(xtk) =

(∑
1

+
∑
2

)
(xtk+1

− xtk)
2(∂2xF )(xtk) (4.22)

we have ∑
2

[
F (xtk+1

)− F (xtk)
]
=
∑
tk∈pn

(xtk+1
− xtk)(∂xF )(xtk)

+
∑
2

(xtk+1
− xtk)

2
[
(∂2xF )(xtk) +R(t̃k, tk)

]
−
∑
1

(xtk+1
− xtk)(∂xF )(xtk) (4.23)

Let us analyze the terms occurring in (4.20) separately.
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(a) Since
∑

2 does not contain jumps of finite size

lim
|pn|↓0

∑
2

(xtk+1
− xtk)

2R(t̃k, tk) = 0 (4.24)

for the same reasons put forward in the continuous xt case. Similarly

lim
|pn|↓0

∑
2

(xtk+1
− xtk)

2(∂2xF )(xtk) =

∫ t

0
d V

(2,c)
[x ,x] ([0, s]) (∂

2
xF )(xs) (4.25)

(b) The limit of the sum including jumps is dominated by these latter ones

lim
|pn|↓0

∑
1

(xtk+1
− xtk)(∂xF )(xtk) =

∑
s∈J

J[x](s)(∂xF )(xs−) (4.26)

We have then

F (xt)− F (xo) = lim
|pn|↓0

∑
tk∈pn

[F (xtk+1
)− F (xtk)] = lim

|pn|↓0

∑
tk∈pn

(xtk+1
− xtk)(∂xF )(xtk)

+
1

2

∫ t

0
d V c

[x ,x]([0, s]) (∂
2
xF )(xs) +

∑
s∈J

[
F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)

]
(4.27)

where Taylor’s formula also guarantees that∑
s∈J

[
F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)

]
≤ C

∑
s∈J

J2
[x](s) (4.28)

Thus the last two term on the right hand side of (4.27) denote a finite limit of the approximating sums. This
observation yields the claim and concludes the proof.

Remark 4.1. Observation if xt is CADLAG of finite (first) variation we have

F (xt)− F (x0) =
∫ t

0
dxs (∂xF )(xs−) +

∑
s∈J

[F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)] (4.29)

Let us consider for example

xt = x0 +

{
c1 t t ∈ [0, 1/2)

c2 t+ c3 t ∈ [1/2, 1]
(4.30)

and suppose F is the identity map:

F (x) = x ⇒ ∂xF (x) = 1

Then we have

xt − x0 =
∫ t

0
dxs + [x1/2 − x1/2− − J[x](1/2)] 1[1/2,1](t) =

∫ t

0
dxs

as by definition

J[x](s) ≡ xs − xs−

which is non-vanishing only when a jump occurs. Namely we see that
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1. if t < 1/2 we have trivially

xt − x0 =
∫ t

0
d(c1 s) 1 = c1 t

2. t > 1/2 ∫ t

0
dxs =

∫ 1/2−

0
ds c1 + (x1/2 − x1/2−) +

∫ t

1/2−
ds c2

=
c1
2

+
c2 − c1

2
+ c3 + c2

(
t− 1

2

)
= c2 t+ c3

Gleaning all the terms together

xt − x0 = c2 t+ c3

Had we considered a general smooth function F given (4.30) we would have instead gotten for t > 1/2 into∫ t

0
dxs (∂xF )(xs−) =

∫ 1/2

0
ds ẋs(∂xF )(xs−) + (x1/2 − x1/2−)(∂xF )(x1/2−)

+

∫ t

1/2
ds ẋs(∂xF )(xs) = F (xt)− F (x1/2) + (x1/2 − x1/2−) (∂xF )(x1/2−) + F (x1/2−)− F (x0)

and

F (x1/2)− F (x1/2−)− (∂xF )(x1/2−)J[x](1/2) = F (x1/2)− F (x1/2−)− (∂xF )(x1/2−) (x1/2 − x1/2−)

It is readily see that the sum of the two terms equals F (xt)− F (x0).

Appendix

A Partitions

Definition A.1 (Partition). If I = [x− , x+] ⊂ R is an interval a partition p (subdivision) of I is a finite sequence
{xk}nk=1 of points in I such that

x− = x1 < . . . < xn = x+

Definition A.2 (Mesh of a partition). The mesh size of a partition p of an interval I = [x− , x+] is

|p| = max
1≤k≤n

|xk+1 − xk|

Definition A.3 (Refinement of a partition). The refinement of a partition p of the interval I is another partition p′ that
contains all the points from p and some additional points, again sorted by order of magnitude.
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