1 Introduction

The content of these notes is also covered by chapter 3 section C of [1].

2 Kolmogorov-Čentsov theorem

Theorem 2.1 (Kolmogorov-Čentsov). If $\xi_{t}(\omega)$ is a stochastic process on (Ω, \mathcal{F}, P) satisfying

$$
\mathrm{E}\left|\xi_{t}-\xi_{s}\right|^{\beta} \leq C|t-s|^{1+\alpha}
$$

for some positive constants α, β and C, then if necessary, $\xi_{t}(\omega)$ can be modified for each t on a set of measure zero, to obtain an equivalent version $\tilde{\xi}_{t}(\omega)$ that is almost surely continuous with exponent γ for every $\gamma \in[0, \alpha / \beta]$ and some $\delta>0$:

$$
\mathrm{P}\left(\omega ; \sup _{\substack{0<t-s<h(\omega) \\ t, s \in[0, T]}} \frac{\left|\tilde{\xi}_{t}(\omega)-\tilde{\xi}_{s}(\omega)\right|}{|t-s|^{\gamma}} \leq \delta\right)=1
$$

Proof. Let

$$
\mathcal{T}_{n}=\left\{\frac{j T}{2^{n}}\right\}_{j=0}^{2^{n}}
$$

The countable union $\mathcal{T}:=\cup_{n=0}^{\infty} \mathcal{T}_{n}$ is a countable dense subset of $[0, T]$. By linear interpolation we can construct a sequence of approximations to the original process $\xi(t)$ coinciding with it on dyadic rationals e.g.

- the \mathcal{T}_{n}-based interpolation is

$$
\xi_{n}(t)=\xi\left(\frac{j}{2^{n}} T\right)+\left(t-\frac{j T}{2^{n}}\right) \frac{\xi\left(\frac{j+1}{2^{n}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)}{\frac{T}{2^{n}}} \quad \& \quad t \in\left[\frac{j}{2^{n}} T, \frac{j+1}{2^{n}} T\right] \equiv \mathcal{I}_{j}^{n}
$$

- The \mathcal{T}_{n+1}-based interpolation is

$$
\xi_{n+1}(t)=\xi\left(\frac{j}{2^{n}} T\right)+\left(t-\frac{j T}{2^{n}}\right) \frac{\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)}{\frac{T}{2^{n+1}}} \quad \& \quad t \in\left[\frac{j T}{2^{n}}, \frac{(2 j+1) T}{2^{n+1}}\right] \equiv \mathcal{I}_{2 j}^{n+1}
$$

so that $t \in \mathcal{T}_{n}$ we have

$$
\xi(t)=\xi_{n}(t)=\xi_{n+1}(t) \quad t \in \mathcal{T}_{n}
$$

and for $t \in \mathcal{I}_{j}^{n} \cap \mathcal{I}_{2 j}^{n+1}$

$$
\left|\xi_{n+1}(t)-\xi_{n}(t)\right|=\left(t-\frac{j T}{2^{n}}\right)\left|\frac{\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)}{\frac{T}{2^{n+1}}}-\frac{\xi\left(\frac{j+1}{2^{n}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)}{\frac{T}{2^{n}}}\right|
$$

which can be rewritten as

$$
\left|\xi_{n+1}(t)-\xi_{n}(t)\right|=\frac{2^{n+1}}{T}\left(t-\frac{j T}{2^{n}}\right)\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\frac{\xi\left(\frac{j T}{2^{n}}\right)+\xi\left(\frac{j+1}{2^{n}} T\right)}{2}\right|
$$

so that by the triangular inequality:

$$
\begin{aligned}
& \left|\xi_{n+1}(t)-\xi_{n}(t)\right| \leq \frac{\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)\right|+\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{j+1}{2^{n}} T\right)\right|}{2} \\
& \quad \leq\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{(j+1) T}{2^{n}}\right)\right| \vee\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)\right|
\end{aligned}
$$

The inequality entails that

$$
\sup _{0 \leq t \leq T}\left|\xi_{n+1}(t)-\xi_{n}(t)\right| \leq \sup _{0 \leq j<2^{n}-1}\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{(j+1) T}{2^{n}}\right)\right| \vee\left|\xi\left(\frac{2 j+1}{2^{n+1}} T\right)-\xi\left(\frac{j T}{2^{n}}\right)\right|
$$

The following inequalities hold true:

- if the occurrence of the event A implies the occurrence of the event B we must have $A \subseteq B$ and therefore $P(A) \leq P(B)$ which translates for us into

$$
\begin{aligned}
& \mathrm{P}\left(\sup _{0 \leq t \leq 1}\left|\xi_{n+1}(t)-\xi_{n}(t)\right| \geq 2^{-n \gamma}\right) \\
& \quad \leq \mathrm{P}\left(\sup _{0 \leq j \leq 2^{n+1}-1}\left|\xi\left(\frac{(j+1) T}{2^{n+1}}\right)-\xi_{n}\left(\frac{j T}{2^{n+1}}\right)\right| \geq 2^{-n \gamma}\right)
\end{aligned}
$$

- as $\mathrm{P}\left(\cup_{k} A_{k}\right) \leq \sum_{k} \mathrm{P}\left(A_{k}\right):$

$$
\begin{aligned}
& \mathrm{P}\left(\sup _{0 \leq j \leq 2^{n+1}-1}\left|\xi\left(\frac{(j+1) T}{2^{n+1}}\right)-\xi_{n}\left(\frac{j T}{2^{n+1}}\right)\right| \geq 2^{-n \gamma}\right) \\
& \quad \leq 2^{n+1} \sup _{0 \leq j \leq 2^{n+1}-1} \mathrm{P}\left(\left|\xi\left(\frac{(j+1) T}{2^{n+1}}\right)-\xi_{n}\left(\frac{j T}{2^{n+1}}\right)\right| \geq 2^{-n \gamma}\right)
\end{aligned}
$$

- By Čebyšev inequality and using the theorem's hypothesis

$$
\begin{aligned}
& \mathrm{P}\left(\left|\xi\left(\frac{(j+1) T}{2^{n+1}}\right)-\xi_{n}\left(\frac{j T}{2^{n+1}}\right)\right| \geq 2^{-n \gamma}\right) \\
& \quad \leq \frac{\mathrm{E}\left|\xi\left(\frac{(j+1) T}{2^{n+1}}\right)-\xi_{n}\left(\frac{j T}{2^{n+1}}\right)\right|^{\beta}}{2^{-n \beta \gamma}} \leq 2^{n \beta \gamma} C\left(\frac{T}{2^{n+1}}\right)^{\alpha+1}
\end{aligned}
$$

Gleaning the above information together we obtain

$$
\mathrm{P}\left(\sup _{0 \leq t \leq T}\left|\xi_{n}(t)-\xi_{n+1}(t)\right|\right) \leq C T^{\alpha+1}\left(\frac{1}{2}\right)^{n(\alpha-\gamma \beta)}
$$

If

$$
\gamma>\frac{\alpha}{\beta}
$$

the inequality entitle us to apply Borel-Cantelli lemma and conclude

$$
\sup _{0 \leq t \leq T}\left|\xi_{n}(t)-\xi_{n+1}(t)\right| \rightarrow 0 \quad \text { a.s. }
$$

and consequently

$$
\lim _{n \uparrow \infty} \xi_{n}(t)=\tilde{\xi}(t)
$$

The limit $\tilde{\xi(t)}$ will be continuous on $[0, T]$ and will coincide with $\xi(t)$ on \mathcal{T} thereby establishing our result.

Observation

The set \mathcal{T} is the set of dyadic rationals. An a posteriori verification that such set is indeed countable is that its complementary set \mathcal{T}^{c} has full Lebesgue measure. Namely for any fixed n the elements of T_{n} are equally spaced by intervals of size 2^{-n} :

$$
\begin{equation*}
\left|\mathcal{T}_{n}^{c}\right|=1 \tag{2.1}
\end{equation*}
$$

Passing to the limit $n \uparrow \infty$ does not affect the result thus

$$
\begin{equation*}
\left|\mathcal{T}^{c}\right|=1 \tag{2.2}
\end{equation*}
$$

3 Summary of notions of convergence

There are free notion of convergence

- Convergence in probability: $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ converges to ξ in probability if for every positive ϵ

$$
\lim _{n \uparrow \infty} \mathrm{P}\left(\left|\xi_{n}-\xi\right|<\epsilon\right)=0
$$

- Mean square convergence: $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ converges to ξ in mean square if for every positive ϵ

$$
\lim _{n \uparrow \infty} \mathrm{E}\left(\xi_{n}-\xi\right)^{2}=0 \quad \xi_{n} \xrightarrow{n \uparrow \infty} \xi \quad \text { m.s. }
$$

- Almost sure convergence: $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ converges to ξ almost surely (i.e. $P=1$) if the event

$$
\left\{\xi_{n} \xrightarrow{n \uparrow \infty} \xi\right\} \equiv\left\{\omega \in \Omega \mid \xi_{n}(\omega) \xrightarrow{n \uparrow \infty} \xi\right\}
$$

has probability one.
Convergence in probability is the weakest notion

$$
\begin{array}{lll}
\xi_{n} \xrightarrow{\text { m.s. }} \xi & \Rightarrow \xi_{n} \quad \xrightarrow{P} \xi & \quad \text { by Čebyšev } \\
\xi_{n} \xrightarrow{\text { a.s. }} \xi & \Rightarrow \quad \xi_{n} \xrightarrow{P} \xi
\end{array}
$$

The second implication follows in general from the fact that for telescopic events

$$
\begin{equation*}
\mathrm{P}\left(\lim _{n \uparrow \infty} A_{n}\right)=\lim _{n \uparrow \infty} \mathrm{P}\left(A_{n}\right) \tag{3.1}
\end{equation*}
$$

and the chain of inequalities

$$
\begin{equation*}
\mathrm{P}\left(\lim _{n \uparrow \infty} \sup _{k \geq n} A_{k}\right) \equiv \mathrm{P}\left(\lim _{n \uparrow \infty} \cup_{k=n}^{\infty} A_{k}\right)=\lim _{n \uparrow \infty} \mathrm{P}\left(\cup_{k=n}^{\infty} A_{k}\right) \geq \lim _{n \uparrow \infty} \sup _{k \geq n} \mathrm{P}\left(A_{k}\right) \tag{3.2}
\end{equation*}
$$

Almost sure convergence does not imply mean square convergence:

$$
\xi_{n} \xrightarrow{\text { a.s. }} \xi \quad \nRightarrow \quad \xi_{n} \xrightarrow{\text { m.s. }} \xi
$$

For example let $\left\{\xi_{n}\right\}_{n=0}^{\infty}$ independent uniformly distributed such that

$$
\xi_{n}=\left\{\begin{array}{l}
n \\
0
\end{array}\right.
$$

then

$$
\xi_{n} \xrightarrow{\text { a.s. }} 0
$$

but

$$
\mathrm{E} \xi_{n}^{2}=n
$$

Conversely, mean square convergence does not almost sure convergence:

$$
\xi_{n} \xrightarrow{m . s .} \xi \quad \nRightarrow \quad \xi_{n} \xrightarrow{\text { a.s. }} \xi
$$

References

[1] L. C. Evans. An Introduction to Stochastic Differential Equations. Lecture notes, UC Berkeley, 2006.

