1 Introduction

The content of these notes is also covered by chapter 3 section C of [[1]].

2 Kolmogorov—(vlentsov theorem

Theorem 2.1 (Kolmogorov-Centsov). If &(w) is a stochastic process on (Q, F, P) satisfying
B¢ — &7 <Ot —s'™

for some positive constants o, 3 and C, then if necessary , &(w) can be modified for each t on a set of measure zero,
to obtain an equivalent version & (w) that is almost surely continuous with exponent -y for every v € [0, /] and
some § > 0:
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The countable union 7 := U2 T, is a countable dense subset of [0,T]. By linear interpolation we can construct a
sequence of approximations to the original process £(t) coinciding with it on dyadic rationals e.g.
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e the 7,-based interpolation is
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e The 7,11-based interpolation is
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which can be rewritten as
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so that by the triangular inequality:
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e if the occurrence of the event A implies the occurrence of the event B we must have A C B and therefore
P(A) < P(B) which translates for us into
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e By Cebysev inequality and using the theorem’s hypothesis
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The inequality entails that

sup |§n+1 (t) - gn(t” < sup
0<t<T 0<j<2n—1

The following inequalities hold true:

Gleaning the above information together we obtain
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the inequality entitle us to apply Borel-Cantelli lemma and conclude
sup &, (t) —&np1 (B)] — O a.s.
0< t<T
and consequently
lim &, (t) = £ (t)
ntoo
The limit £(t) will be continuous on [0, '] and will coincide with £() on T thereby establishing our result. O



Observation

The set T is the set of dyadic rationals. An a posteriori verification that such set is indeed countable is that its
complementary set 7 ¢ has full Lebesgue measure. Namely for any fixed n the elements of 7,, are equally spaced by

intervals of size 27":
Tal=1
Passing to the limit n 1" oo does not affect the result thus

T =1

3 Summary of notions of convergence
There are free notion of convergence

e Convergence in probability: {§;};°, converges to § in probability if for every positive e

lim (16, ] < ) =0

e Mean square convergence:{¢;};2 | converges to § in mean square if for every positive €

lim E(&, — €)2 =0 £ ms.

ntoo
e Almost sure convergence: {&;}:;2, converges to & almost surely (i.e. P = 1) if the event
{gn g 5} = {w € Q& (w) g §}
has probability one.
Convergence in probability is the weakest notion

LM =6 D by Cebysev

L% e = g 5¢

The second implication follows in general from the fact that for telescopic events

P <lim An> = lim P (A4,)
ntoo ntoo
and the chain of inequalities

p (hm sup Ak> =P <lim Uz":nAk> = lim P (Up2,,Ax) > lim sup P (Ay)
ntoo ntoo
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Almost sure convergence does not imply mean square convergence:
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For example let {&,, } independent uniformly distributed such that

n w 0,1/n
gn:{ € [0,1/n)

0
then
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Conversely, mean square convergence does not almost sure convergence:
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