
1 Introduction

The content of these notes is also covered by chapter 3 section C of [1].

2 Kolmogorov–Čentsov theorem

Theorem 2.1 (Kolmogorov-Čentsov). If ξt(ω) is a stochastic process on (Ω,F , P ) satisfying

E|ξt − ξs|β ≤ C |t− s|1+α

for some positive constants α, β and C, then if necessary , ξt(ω) can be modified for each t on a set of measure zero,
to obtain an equivalent version ξ̃t(ω) that is almost surely continuous with exponent γ for every γ ∈ [0, α/β] and
some δ > 0:
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The countable union T := ∪∞n=0Tn is a countable dense subset of [0 , T ]. By linear interpolation we can construct a
sequence of approximations to the original process ξ(t) coinciding with it on dyadic rationals e.g.
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• The Tn+1-based interpolation is
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so that t ∈ Tn we have
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which can be rewritten as
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so that by the triangular inequality:
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The inequality entails that
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The following inequalities hold true:

• if the occurrence of the event A implies the occurrence of the event B we must have A ⊆ B and therefore
P (A) ≤ P (B) which translates for us into
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• By Čebyšev inequality and using the theorem’s hypothesis
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Gleaning the above information together we obtain
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the inequality entitle us to apply Borel-Cantelli lemma and conclude

sup
0≤ t≤T

|ξn (t)− ξn+1 (t) | → 0 a.s.

and consequently

lim
n↑∞

ξn (t) = ξ̃ (t)

The limit ˜ξ(t) will be continuous on [0 , T ] and will coincide with ξ(t) on T thereby establishing our result.
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Observation

The set T is the set of dyadic rationals. An a posteriori verification that such set is indeed countable is that its
complementary set T c has full Lebesgue measure. Namely for any fixed n the elements of Tn are equally spaced by
intervals of size 2−n:

|T cn | = 1 (2.1)

Passing to the limit n ↑ ∞ does not affect the result thus

|T c| = 1 (2.2)

3 Summary of notions of convergence

There are free notion of convergence

• Convergence in probability: {ξi}∞i=1 converges to ξ in probability if for every positive ε

lim
n↑∞

P(|ξn − ξ| < ε) = 0

• Mean square convergence:{ξi}∞i=1 converges to ξ in mean square if for every positive ε

lim
n↑∞

E(ξn − ξ)2 = 0 ξn
n↑∞→ ξ m.s.

• Almost sure convergence: {ξi}∞i=1 converges to ξ almost surely (i.e. P = 1) if the event{
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}
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has probability one.

Convergence in probability is the weakest notion

ξn
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P→ ξ by Čebyšev
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P→ ξ

The second implication follows in general from the fact that for telescopic events
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Almost sure convergence does not imply mean square convergence:

ξn
a.s.→ ξ ; ξn

m.s.→ ξ
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For example let {ξn}∞n=0 independent uniformly distributed such that

ξn =

{
n ω ∈ [0 , 1/n]

0

then

ξn
a.s.→ 0

but

Eξ2n = n

Conversely, mean square convergence does not almost sure convergence:

ξn
m.s.→ ξ ; ξn

a.s.→ ξ
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